
Robert Porzak, Panagiotis Psomos

Innovatio Press Publishing House

COMPUTATIONALCOMPUTATIONAL
THINKING FOR TEACHERSTHINKING FOR TEACHERS

AND CLASSESAND CLASSES

COMPUTATIONAL THINKING
FOR TEACHERS AND CLASSES

Edited by
Robert Porzak

Panagiotis Psomos

COMPUTATIONAL THINKING
FOR TEACHERS AND CLASSES

Edited by
Robert Porzak

Panagiotis Psomos

Lublin 2023

This project has been funded with the support from the European Commission (project
no: 2020-1-PL01-KA201-081924). This publication reflects the views only of the author, and
the Commission cannot be held responsible for any use which may be made of the informa-

tion contained therein.

WSEI UNIVERSITY

Publishing series:
Monograph of the Faculty of Human Sciences of WSEI University

Computational Thinking for Teachers and Classes
First edition

Editors:
Robert Porzak

Panagiotis Psomos

Reviewers:
dr hab. Wiesław Kowalski, prof. WSEI

Paraskevi Poulogiannopoulou, Phd, European University Cyprus

Proofreading:
Beata Machulska

DTP:
Marta Krysińska-Kudlak

Cover design:
Wiktor Bogusz

Cover artwork:
The cover was designed using assets from freepik.com

Cover art: gpointstudio/ freepik.com

@Copyright by
Innovatio Press, Lublin 2023

Creative Commons (CC BY-SA 4.0)
This publication has been funded with the support from the European Commission (project no:

2020-1-PL01-KA201-081924). This publication reflects the views only of the author, and the Commis-
sion cannot be held responsible for any use which may be made of the information contained therein.

Printed in Poland
Innovatio Press Publishing House

WSEI University
20-209 Lublin, Projektowa 4

tel.: +48 81 749 17 77, fax: +48 81 749 32 13
www.wsei.lublin.pl, e-mail: wydawnictwo@wsei.lublin.pl

E-ISBN: 978-83-67550-13-0
OPEN ACCESS

http://freepik.com
http://freepik.com
http://www.wsei.lublin.pl
mailto:wydawnictwo@wsei.lublin.pl

5

Spis treści

Introduction ... 7

Cristina Fregonese
1. Computational Thinking at first glance - What, why and how 9

1.1. Definition of Computational Thinking (CT) .. 9
1.2. Characteristics of Computational Thinking .. 9
1.3. Algorithms and Coding - why computational thinking is so valuable 11
1.4. Application of computational thinking in the classroom 13
1.5. Training approaches .. 15

Georginia Boyd
2. Decomposition ... 18

2.1. Decomposition definition .. 18
2.2. Benefits of Decomposition in the Academic Setting 18
2.3. Pedagogical Benefits of Decomposition .. 19
2.4. Long-term Benefits of Learning Decomposition Skills 19
2.5. How to Integrate Decomposition into Lessons .. 19
2.6. Integrating decomposition into lessons ... 21

Georginia Boyd
3. Pattern Recognition .. 22

3.1. Pattern Recognition definition .. 22
3.2. Pattern recognition - benefits for teachers .. 22
3.3. Pattern recognition - benefits for students .. 24
3.4. Challenges in teaching pattern recognition ... 25
3.5. Integrating pattern recognition into lessons ... 26

Chrysanthi Konstanti, Eftychia Xerou
4. Abstraction ... 28

4.1. The importance of teaching abstraction .. 29
4.2. Challenges in teaching abstraction ... 29
4.3. The need to teach abstraction .. 30
4.4. Teaching abstraction ... 30
4.5. Abstraction in practice .. 32

Computational Thinking for Teachers and Classes

Chrysanthi Konstanti, Eftychia Xerou
5. Algorithmization .. 34

5.1. Alghorithmic thinking definition ... 34
5.2. The role of teaching algorithmization .. 34
5.3. Challenges in teaching algorithmization ... 34
5.4. The need to teach algorithmization .. 35
5.5. Teaching algorithmization ... 35
5.6. Resources to support the learning of abstraction and algorithmic skills 36
5.7. Algorithmization in practice ... 36

Panagiotis Psomos
6. The CTApp Game. The idea, the structure and its functionalities 38

Robert Porzak
7. Integrating CT with curricula and classes ... 45

Robert Porzak
7.1. Scenario 1 ... 52

Fahimeh Mousavi
7.2. Scenario 2 ... 56

Eftychia Xerou
7.3. Scenario 3 ... 59

Bibliography ... 61

7

Introduction

Computational thinking is a skill that enables us to solve complex problems by
breaking them down into smaller and simpler steps, finding patterns and similarities,
abstracting away irrelevant details, and designing algorithms that can be executed by
computers or humans. It is a skill that is essential for the 21st century, as technology
becomes more pervasive and influential in every aspect of our lives. Computational
thinking can also enhance our creativity, critical thinking, and collaboration skills,
as we learn to apply it to various domains and disciplines such as art, language arts,
math, science, and social studies.

This book is aimed at teachers who have not yet made extensive use of tools to
support the development of students’ computational thinking. The book aims to help
teachers understand what computational thinking is, why it is important and how
they can integrate it into the existing curricula. It is based on a literature review of
the current research and best practice in computational thinking education, as well
as on the experience and insights of the authors and partners of the CTApp project.
The book provides a number of practical tips and examples for teachers who want to
integrate computational thinking into their classrooms, using educational technolo-
gy tools as well as content-specific methods.

The book consists of seven chapters. The first chapter introduces the concept of
computational thinking and its components: decomposition, pattern recognition,
abstraction and algorithm design. It also explains the benefits and challenges of
teaching computational thinking and the role of educators in supporting it. Chapter
Two focuses on teaching decomposition and Chapter Three on pattern recognition,
the ability to break down a problem into smaller parts and find similarities between
them. They include strategies and exercises for teaching these skills across subjects
and grade levels. The fourth chapter covers teaching abstraction and the fifth cov-
ers algorithm design, that is, the skill of removing unnecessary detail and creating
a sequence of steps to solve a problem. These chapters provide guidance and exam-
ples for teaching abstraction and algorithm design skills in a variety of contexts and
scenarios. The sixth chapter provides an overview of the CTApp Game, which helps
students practise computer thinking skills in a fun and engaging way. The chapter
describes the idea, structure and features of the game and how teachers can use it
in their classrooms. The seventh chapter summarises some popular strategies and
online resources for integrating computer thinking into different subjects. It also pro-
vides links to additional resources and identifies opportunities for further training in
computational thinking.

Computational Thinking for Teachers and Classes

The Appendix to Chapter Seven presents three sample scenarios for different top-
ics (one scenario provided by the CTApp project partners Cyprus, Poland and Italy),
which illustrate how computational thinking can be applied in different fields.

We hope that this book will inspire you to explore the possibilities of computa-
tional thinking in your teaching practice, and help you prepare your students for the
future challenges and opportunities that technology will bring.

9

Cristina Fregonese
INNOVA S.r.l.

1. Computational Thinking at first glance - What, why and how

1.1. Definition of Computational Thinking (CT)
Is that a fact? There is still no universally accepted definition of “Computational

Thinking”.
The concept of computational thinking (CT) was first introduced by an educationalist

Seymour Papert in 1967 talking about LOGO, the programming language he developed
at MIT (Massachusetts Institute of Technology) to teach programming to children. He
was convinced that the use of computers could foster formal thinking in children and, in
particular, could allow children to autonomously “construct” their learning and thinking.

The concept of CT was then revitalized in 2006 by a computer scientist Jeannette
M. Wing who, in the article “Computational Thinking”, argued that it addresses the
conundrum of machine intelligence by asking what machines do better than man
and what man does better than machines. Wing argues that computational thinking
is not simply a procedural coding activity, but is a basic conceptual skill that, along
with reading, writing and arithmetic, should be taught to all children. It appears that
computational thinking purports to be critical thinking in evaluating situations and
an advanced problem-solving ability using computerized tools.

If computer science is the science of what can be computerized and how to com-
puterize it, however, computational thinking is not a skill unique to computer scien-
tists. It allows problems to be solved, a system to be designed and human behaviour
to be understood in everyday life, in an alternative way, through the fundamental
concepts of information technology.

1.2. Characteristics of Computational Thinking
Some studies have linked CT to critical thinking further defining it as a new

method of solving a problem using computer science techniques. These authors
(Giacalone, 2020) define critical thinking as a “skill or competence, by which the in-
dividual transcends, in a deliberate manner, in order to reach reasonable conclusions
that can be corroborated using valid information”. It is a way of thinking that makes it
possible to give rise to multiple solutions. In 2016, Prof. Leen-Kiat Soh indicated that
CT complements critical thinking as a way of reasoning to solve problems, make de-
cisions and interact with the world. CT therefore involves techniques such as abstrac-
tion, decomposition, algorithmic design, generalization, evaluation and interaction
with the computer.

10

Computational Thinking for Teachers and Classes

Key Skills for Computational Thinking
There are four key skills in computational thinking:

1 Decomposition
2 Pattern Recognition
3 Pattern Abstraction
4 Algorithm Design

1) Decomposition
Breaking down big and difficult problems into something much simpler. Often

big problems are just many little problems put together. Decomposition is an im-
portant life skill to be relied on in the future when students and adults need to take
on larger tasks. Students will learn ways to delegate group projects and build time
management skills

2) Pattern Recognition
Sometimes when a problem is made up of many small bits, you will notice that

these bits have something in common. If they do not, they could, however, have
strong similarities with the pieces of another problem that has already been solved.
If you are able to find these regularities, it will become a lot easier to identify the
individual pieces: pattern recognition is simply looking for patterns in the puzzles
and determining if any of the problems or solutions we encountered in the past may
apply to a present situation. May, what we learned in the past, help us sort out the
actual problem? If you have ever built a piece of IKEA furniture, you will understand
the importance of patterns. While assembling an IKEA drawer unit, it is likely to take
you much longer to assemble the first drawer than the fourth or fifth. When we repeat
steps in our assembling process we learn how to solve the instructions more quickly
and learn from our mistakes. The painstaking process of assembling that first part
teaches us the skills to perform the process more efficiently in the future.

3) Pattern Abstraction
Once you have located a pattern, it is possible to abstract (ignore) the details that

differentiate the various things and use general techniques for finding solutions that
work for more than one problem. Identifying the crucial information in a problem
and disregarding the irrelevant information is one of the hardest parts of computa-
tional learning.

4) Algorithm design
When the solution is ready, it is possible to write it down so it can be executed

step by step. This makes easier to obtain the expected results. Algorithm design is
setting out the steps and rules needed to follow in order to achieve the same desired
outcome every time.

11

1. Computational Thinking at first glance - What, why and how

Sorce: https://code.org/curriculum/course3/1/Teacher.pdf

The essence is that CT creates procedures that allow an agent to meet the given
objectives within a predefined context. Therefore, CT is a useful intellectual tool for
everyone, no matter what their job is.

1.3. Algorithms and Coding - why computational thinking is so
valuable

Computational thinking helps us deal with problems by generalizing them.
The problems deriving from the lack of computational thinking occur in irra-

tional behaviors: we are not robots, because we are guided by emotions, but tackling
a problem rationally simplifies its solution. In addition, developing this approach
makes children more cooperative with their peers.

Following computational thinking, a solution to a problem is found by formal-
izing it in a sequence of actions to communicate it to others: a practical example is
a recipe. We need to follow precise steps to make a cake and if we know how to pass
the procedure clearly and unambiguously, the cake can also be made by other people.

Algorithms and Coding are Strictly connected with Computational Thinking,
but what are they?

Algorithms are among the greatest achievements of humanity. An algorithm is
a rigorous process for solving a problem or realize an idea. Algorithms are the basis
of most of our daily activities. It is thanks to their application that we know how to
calculate the sum of two numbers, find a name in a list, decide the way to follow to
reach a place. CT it is nothing more than the ability to understand, apply and con-
ceive algorithms. The practice of Coding allows everyone to become familiar with
the algorithms.

Coding is an English word which corresponds to an Italian word “programming”.
It obviously means programming computer science, but not in a traditional sense.
Coding in school is a recent discovery.

It’s an approach that puts programming at the center of a path where learning,
starting from the first years of life, is open to new paths and is at the center of a larg-
er project that breaks down IT barriers and stimulates a problem-solving approach.
We should say that CT is an unusual approach to problems and their solution. With

https://code.org/curriculum/course3/1/Teacher.pdf

12

Computational Thinking for Teachers and Classes

coding, children and young people develop CT and the ability to solve more or
less complex problems. They learn not only to code, but to program for learning.

Coding can also be practised without digital devices, in analogical contexts: in
this case we speak of “coding unplugged”. This discipline is especially suitable for
students from kindergarten to lower secondary school. (Midoro, 2016)

By now many schools indicate, among the activities they reserve for children,
hours of coding and computational thinking. There is such a need because students
very often arrive at high school and at university without possessing the ability to
manage and deal with problematic situations.

The problem is that young people struggle to interpret reality: perhaps this is
because they are digital natives and have set aside those skills that were once used
to deal with problems. Added to this is the fact that today the logic that dominates
society is “everything and immediately”: if the problem is difficult, one puts it aside
and avoidance strategies are used.

The advantage of coding is that of bringing children closer to information tech-
nology as a cultural object that is increasingly part of our lives and the world of work.
This language must therefore be understood and children cannot ignore it. Like ge-
ography, robots must also know: mastery of coding in fact helps to govern the ma-
chines, knowing how to write their language, no longer just read it. (Giacalone, 2020)

CT helps students to develop skills that are attractive for future employment
opportunities. Computer science is the fastest growing job market and students with
skills in coding are highly sought after job applicants. While hard tech skills are very
important, it’s softer skills of reasoning and problem solving that employers really
find attractive. These skills are the key to successful understanding why computation-
al thinking is so valuable.

The scientific-cultural side of computer science, also referred to as “computation-
al thinking”, helps to develop logical skills and the ability to solve problems in a cre-
ative and efficient way - the qualities that are important for future citizens. Through
coding, therefore, transversal skills and attention, concentration, memory, crea-
tivity, etc. are enhanced. (Gabbari, Gagliardi, Gaetano, Sacchi, 2020)

Problem - solving key skill of a future job
The present-day job market requires workers capable of solving non-routine prob-

lems (see World Economic Forum 2016). According to the Report on Adult Skills (PIACC
Survey of Adult Skills) people today encounter growing difficulties in their work which
give way to situations in which it is increasingly necessary to think before acting.

One possible explanation for the transition from routine to non-routine tasks in
the workplace is that, due to the widespread introduction of computerized equipment,
workers no longer have to perform manual routines. Instead, they are required to
face unexpected and unfamiliar problems in governing the machines they manage.

Too often teachers find that while their students excel at routine exercises, they fail
to solve problems they have never encountered before. Problem-solving skills are an
essential component of the skills required to analytically approach interpersonal and

https://teachyourkidscode.com/benefits-of-coding-beyond-the-computer/

13

1. Computational Thinking at first glance - What, why and how

non-routine tasks. In both cases people have to think about how to deal with the situ-
ation, systematically monitor the effect of their actions, and modify them accordingly.

Starting from a primary school, we can affirm that computational thinking teach-
es children to think in an algorithmic manner, to find a solution and develop it, and
this occurs with programming and coding. Actually coding gives children a mind-
set, which will allow them to tackle complex problems when they are older.

In the same way that we don’t teach music in schools to students to become profes-
sional violinists, or English to students to get jobs in journalism, we should not teach
programming to children to get programming jobs: we should do so to them to acquire
a new way of thinking and seeing the world.

1.4. Application of computational thinking in the classroom
The concepts of computational thinking described above (the algorithmic think-

ing, decomposition, etc.) are associated with several behaviors on the part of stu-
dents, which can be observed in the classroom (Computing at School – CAS, 2015)

Algorithmic thinking
Algorithmic thinking represents the ability to think in terms of sequences and

rules, as a way of solving problems. It’s about a basic competence that pupils develop
as they learn to write their own computer programs. In class it is possible to observe:
• Formulating commands

to obtain a desired effect.
• Formulating instructions

to be followed in a given
order (sequence).

• Formulating commands
using arithmetic opera-
tions and logics.

• Writing command se-
quences that memo-
rize, move and manip-
ulate data (variables
and assignment).

• Writing commands
that choose between
several instructions that compose them (selection).

• Writing commands that repeat groups of instructions that make them up (loop /
repeat).

• Grouping and naming a set of commands that perform a defined task to create
a new instruction. (subroutines, procedures, functions, methods).

• Writing commands, which include subroutines which use replicas of themselves
(recursive algorithm).

Sorce: AlgoBlocks - Suzuki, H., & Kato, H. (1993): https://www.
edutech.it/education/blog-edu/item/41-coding-tangibile-
la-sua-evoluzione-e-i-vantaggi-di-utilizzo.html

https://www.edutech.it/education/blog-edu/item/41-coding-tangibile-la-sua-evoluzione-e-i-vantaggi-di-utilizzo.html
https://www.edutech.it/education/blog-edu/item/41-coding-tangibile-la-sua-evoluzione-e-i-vantaggi-di-utilizzo.html
https://www.edutech.it/education/blog-edu/item/41-coding-tangibile-la-sua-evoluzione-e-i-vantaggi-di-utilizzo.html

14

Computational Thinking for Teachers and Classes

• Writing a series of commands that can be followed simultaneously by several
agents (computers/people, parallel thinking and processes, competition).

• Writing a set of declarative rules (coding in Prolog or in a database querying
language).

This also implies:
• Using appropriate wording to write a code that represents one of the above com-

mands.
• Creating algorithms to test a hypothesis.
• Creating algorithms that provide solutions based on experience (heuristics).
• Creating algorithmic descriptions of real world processes in order to have a better

understanding of them. (computational modeling).
• Designing algorithmic solutions that take into account the capabilities, limita-

tions and needs of the people who use and benefit from them.

Decomposition
Decomposition is a way of thinking about artifacts in terms of parts that com-

pose them. Individual parts can be understood, solved, developed and evaluated
separately.

In class it is possible to observe:
• Dividing artifacts into constituent parts to make them easier to work.
• Breaking down a problem into simpler versions of itself, which can be solved in

the same way (divide et impera and recursive method).

Generalization
Generalization is a way of solving new problems on the basis of the solutions

given to the previous ones. It’s about identifying and exploiting models. In class it is
possible to observe:
• Identification of patterns and common characteristics in artifacts.
• Adjustment of solutions, or parts of them to be applied to the whole class of sim-

ilar problems.
• Transfer of ideas and solutions from one problem area to another.

Abstraction
Abstraction is the process of creating a greater artifact understanding by hiding

details. In class it is possible to observe:
• Reducing complexity by eliminating unnecessary details.
• Choosing a way to represent artifacts so that they can be manipulated in a useful way.
• Concealing all artifact complexities (hiding functional complexity).
• Hiding complexity in data such as using data structures.
• Identifying relationships between abstractions.
• Information filtering in solution development.

15

1. Computational Thinking at first glance - What, why and how

Evaluation
Evaluation is the process of verifying that the solution is correct: that it fits the

purpose. During thought-based computational assessment, there is a specific, and
often extreme attention to detail. In class it is possible to observe:
• Evaluation that the artifact fits the purpose.
• Process of determining which artifact performs the right function (functional

correctness).
• Design and execution of scheduled tests and the interpretation of results (tests).
• Evaluation that the performance of the artifact is good enough (utility: effective-

ness and efficiency).
• Comparison of the performance of artifacts running the same function.
• Compromise between conflicting needs.
• Evaluation whether the artefact is easy for people to use (usability).
• Process of determining if the artifact offers an experience adequately positive

when used (experience of the user).
• Evaluation of any of the above against the specifications and the criteria set.
• Going through the processes or algorithms/algorithms programming step by

step to process what they do (evidence/trace).
• Use of precise argument to justify that algorithm works (test).
• Use of precise argumentation to test usability or the performance of an artifact

(analytical evaluation).
• Use of methods that include artifact observation used to evaluate its usability

(empirical evaluation).
• Evaluation that the product meets the general criteria of performance (heuristics).

1.5. Training approaches
It has been noticed that it is possible to work at school to observe the develop-

ment of CT, for example by asking pupils to mentally “disassemble” some actions
they perform automatically, and to write down the correct, rigorous procedure that
would allow a machine (an “alien”, if preferred) to reproduce the same action without
errors: for example, drawing a rectangle without removing the pen from the paper,
or looking up a word in the dictionary. (Gabbari, Gagliardi, Gaetano, Sacchi, 2020)

Then there are an infinite number of unplugged activities that can be practised in
class gradually and with a high degree of involvement.

In the New Scenarios of 2018 this pervasive function of CT is emphasized: “It is
a creative logical process that, more or less consciously, is put into action in everyday
life to face and solve problems. Education is acting consciously: this strategy allows us to
learn how to deal with situations in an analytical way, breaking them down into various
aspects that characterize them, and planning the most suitable solutions for each “.

16

Computational Thinking for Teachers and Classes

From computational thinking to coding
But it is above all in the Coding activities, and therefore in the writing of languag-

es intended for a machine, that CT can find ample space for development. Computers
are ideal performers, they are not gifted with intelligence. This is why writing instruc-
tions that a machine will have to execute requires, to some extent, a greater degree of
formality and rigor than in communication between humans.

Programming makes the concepts of CT concrete and turns it into a learning tool.
There are textual programming systems and visual programming systems: in the

former the instructions (for the machine) must be written in sequence by means of
a text editor; in visual systems, on the other hand, the individual instructions are
represented by colored blocks that can be dragged into a work area (drag and drop).
The blocks can be combined together in order to compose a sequence of instructions,
which constitutes the program. (Gabbari, Gagliardi, Gaetano, Sacchi, 2020)

Visual systems are often preferred by teachers because block programming al-
lows them to focus only on the procedure, not taking into account the correctness of
the language: the blocks are already linked correctly from the syntactic point of view
(at most you can make some semantic mistakes) and focus on reasoning. The teach-
er’s task is to offer the right pretext and the right context.

How to choose a programming language for educational coding? Most of the
teachers seem to be oriented towards an educational software language that offers
a low floor and a high ceiling, as S. Papert says, that is, a language that facilitates the
first steps as much as possible but, at the same time, allows increasingly complex pro-
jects to be carried out. (Gabbari, Gagliardi, Gaetano, Sacchi, 2020)

How serious games support training
Through serious games, training becomes a powerful and versatile tool. In an era

where the large amount of information makes users easily distracted, the training
courses created by companies, entities or institutions respond to the fundamental
need, namely making training as effective, fast and engaging as possible. In this per-
spective, the trend has spread to enrich training with videos, cartoons, online games
and role plays.

All this multimedia content is adopted by users of all ages to learn and to keep
up-to-date in a playful and fun context. Thus, both the Millennials and Generation Z,
fond of video games, and those more adult can have fun and learn by playing serious
games. After all, learning by playing has always been one of the most deeply rooted
mechanisms of people.

Being an interactive type of learning, serious games allow the player to learn by
doing and to create his or her own content. Thanks to the learning by doing serious
games, the learner will find himself in front of multiple decision scenarios, interac-
tions with the didactic objects encountered during the game and feedback received
from others. The learner will be assigned a score based on the correctness of the deci-
sion to be made. It is also possible to obtain badges or medals based on the objectives
achieved. (Luciano and Fabio, 2017)

17

1. Computational Thinking at first glance - What, why and how

Coding and computational thinking at primary and nursery school: the tools
How is coding done at school and what tools are available? They can be fun tools,

such as Scratch or Scratch Jr. for the little ones and Kodu (Luciano and Fabio 2017),
or the code.org exercises. They look like games more than exercises. And in fact,
from a certain point of view they are. The children, while playing and winning every
challenge, do solve problems, even small problems like avoiding an obstacle or get-
ting caught by one of the villains in history, just to give a couple of examples. To solve
the problem they must work to understand what the possible solution is, and if they
reach the goal it means they have learned how to do so. Meanwhile, unknowingly
they have written lines of computer code, even if physically they have not written
any, not even one, and they only moved rectangular blocks whose function and code
correspond to one another.

The strategy, however, which most teachers want to focus on is to use a math-
ematical problem as an experiential situation, with the aim of stimulating children
to get involved in identifying a solution strategy, perhaps through building things
together with a group of companions and sharing the work with the whole class. In
order to do so, complex activities are required, which are not exercises aimed simply
at applying a formula, but proposals aimed at training critical thinking, elaboration,
sharing and reflection on one’s work. And, at this point, what can really be found
useful are problems that have multiple possible solutions, or those “open” ones, where
the final result is not unique.

There are many possible proposals, but, as usual, teachers have to deal with the
time they want to dedicate to the activity and with the type of class in which they op-
erate. These can be critical points, but there are many possible operational proposals
to choose from and to adapt to the specific target and environment.

 An idea could be to propose to children, divided into groups, that they identify
the solution path of a problem, and then give directions for the solution to a robot-
companion who does not know the text: the students will certainly have fun and in
the meantime they will be motivated to correct themselves in the event of an error.
A somewhat more complex activity could be to create a “relay” of problems: one
group invents them, another one solves them and the third one corrects them. The
final comparison and the stimulus to identify other possible strategies will be useful
to focus attention on different resolution steps and on possible alternatives. (Luciano
and Fabio 2017).

Another idea could be to have each group of students choose a problem among
those proposed by us, asking them to write the steps necessary for the resolution.
(Luciano and Fabio 2017).

A useful tool to take advantage of in this case may be the “good old” flow chart,
linear or not, which is difficult to find in primary school books and notebooks, but
which can be an excellent resource for visualizing the path taken. (Luciano and Fabio
2017). After all, how to define the command strip that is created with the Scratch
program, if not by using a digital flow chart?

http://code.org

18

Georginia Boyd
Aspire-Igen Group Ltd.

2. Decomposition

2.1. Decomposition definition
Decomposition is another main core skill in computational thinking, being

one of the four key elements in Google’s “Computational Thinking for Educators”
course. (Yihaun, 2019). If
Computational Thinking is
“the thought process involved
in formulating problems so
solutions can be represented as
computational steps and algo-
rithms”, Decomposition is the
vital step within computation-
al thinking of breaking down
data, processes, or problems
into smaller, more manageable
steps or parts until the user is
confident with their ability to
execute the solution. (Alder et
al., 2022; Rich, et al. 2020; Mannila 2014, Aho, 2012; Csizmadia et al., 2015; Sengupta
et al., 2013; Yihaun, 2019). Given this definition, you probably recognize that you
apply Decomposition into your thought processes and action in everyday life. Every
time you find yourself breaking apart tasks into manageable portions, you are suc-
cessfully exercising decomposition skills.

2.2. Benefits of Decomposition in the Academic Setting
As one may have assumed, decomposition skills have many benefits in the aca-

demic setting. The three we will cover here are improving the student cognitive func-
tions, enhancing teachers’ capacity to convey complex topics, and acting as a way to
predict student performance within the lesson, thereby alerting teachers to pay atten-
tion to students who may need additional assistance far before traditional retention
testing techniques are required, such as exams.

Incorporating Decomposition skills into your lesson plan can help improve your
student’s cognitive performance by increasing their confidence when tackling larger
and more complex theories. (See Weintrop et al. 2016). Just in the same way we chew

19

2. Decomposition

food, breaking apart complex tasks and assignments into more manageable portions
helps to ensure students engage into the lessons and “digest” or retain, the skills con-
veyed therein. As a teacher stated in the Alder study: “[Decomposition] is great espe-
cially when I am trying to teach a complicated topic and I can break it up into much
smaller parts for the students to understand it.” (Alder et al., 2022).

Decomposition skills do not just benefit students, they can also benefit teachers.
For example, in the Uzumcu (2021) study, the consensus among the participating
educators was that decomposition is easily incorporated into existing lessons plans
and played a vital step in problem solving and lesson planning exercises. (Uzumcu,
2021). This was, in part, due to the fact that it allowed the educators to break their
course into manageable modules. In addition to assisting educators to plan and de-
liver their lessons, decomposition can act as a litmus test for the effectiveness of their
course, as a student’s ability to apply decomposition is a good predictor of a student’s
academic success. (Haddad & Kalaani, 2015 –based on data from 982 students over
the course of two years). Similarly, the Uzumcu educators reported an increased ca-
pacity to predict and understand the depth of the student’s comprehension level with
an effective inquiry, built, in part, upon applied decomposition skills. (See Uzumcu,
2021). This in turn gives teachers the time and notice needed to support a class with
a wide range of abilities.

2.3. Pedagogical Benefits of Decomposition
One of the reasons why decomposition skills are readily incorporated into lessons

is that they are largely used in preschool and early childhood education (Calderon,
2015), making subjects and their topics ‘digestible’.

2.4. Long-term Benefits of Learning Decomposition Skills
It is important to note that decomposition skills are not an independent subject or an

independent topic of study (Hsu, 2018). They are used in everyday life, and the benefits
of implementing decomposition skills have been widely recognized by researchers and
teachers (Hsu, 2018; Lockwood, 2017) For example, participants in the Uzumcu study
reported that they were able to use the skills they had learned in their everyday and pro-
fessional lives, such as how to properly integrate decomposition into their work respon-
sibilities (Uzumcu, 2021). Another example of extracurricular benefits is the ability to
recognize gaps in comprehension. Decomposition skills allow students to identify for
themselves what they understand and what they need to work on. This increases self-con-
fidence and gives students clues to the proper allocation of time and resources.

2.5. How to Integrate Decomposition into Lessons
The primary way to integrate decomposition into lessons is to ‘hint’ at what the

strategy is and then encourage students to use it when solving problems (Rich et al.,

20

Computational Thinking for Teachers and Classes

2020). This can be done by asking students to indicate where and how they used the
technique and how this contributed to the problem solving (Rich et al., 2020). In
an astronomy lesson, for example, a teacher might ask students to identify a plan-
et based on specific parameters rather than general properties. He or she then asks
students how they carried out the identification, ‘breaking down’ the analysis into
smaller component activities that are easier to use in other situations (Rich et al.,
2020). Essentially, this approach is based on using decomposition practices as general
problem strategies that can be applied to different issues (Rich et al., 2020). The key
here is to avoid describing to students how a problem has been decomposed and in-
stead provide opportunities for students to explore knowledge and solutions on their
own (Alder et al., 2022).

For example, a teacher might incorporate decomposition into a mathematics les-
son. He or she first divides the students into groups and then asks them to decompose
a large number into prime factors. He or she then asks students to solve the problem
by analyzing the equation, one number at a time. After doing this, it is the right time
to explain to the students that this was an example of decomposition in practice (Rich
et al., 2020).

Another method used to integrate decomposition into the curriculum is to use
visual and tactile stimuli such as block diagrams or charts to illustrate decomposition
(Krist et al., 2017). Another technique is to ‘frame’ decomposition and pattern recog-
nition within a lesson. Essentially, this technique, although very similar to prompting,
involves informing students about the decomposition technique, giving examples of
how to apply it (preparing students to think about the application of decomposition),
before students actually engage in the decomposition exercise later in the lesson (Rich
et al., 2020). The key difference is that while prompting involves telling students when
to use a technique, framing gives students the chance to apply it themselves, without
prompting. Framing can also be used as a reflection tool after a lesson.

A class that considers decomposition in a fully integrated way might look like
this: We start by exploring the differences between the data we want students to ana-
lyze and the information they currently have at hand. We encourage active, verbal
reflection on students’ criteria for singling out certain aspects of the task, perhaps by
asking them to explain this to their partners. For example, in English classes, teachers
might ask students to plan an essay by dividing the topic into subheadings and then
explaining why they made these distinctions. In art classes, teachers can explain and
demonstrate the benefits of approaching the representation of objects through the
play of light and shadow.

Whichever way teachers choose to address decomposition, it is important to ex-
plain why decomposition is important: step-by-step discovery and learning exercis-
es help with learning and understanding complex topics (Lockwood, 2017). Again,
pairing students can be useful here as it will make exploring new skills more comfort-
able and allow pairs to help, refresh, discuss and test each other’s knowledge (Isbell
et l., 2010). Similarly, try creating lesson plans designed to show how decomposition
skills already exist in students’ lives (Burgett 2016).

2. Decomposition

2.6. Integrating decomposition into lessons
Studies show teachers have an easier time incorporating computational thinking

strategies into rich, open-ended, inquiry tasks that were intentionally designed to en-
gage students in higher-level thinking. (Rich, et al. 2020.) Unfortunately, many elemen-
tary curricula for mathematics and science do not provide teachers with access to such
tasks (Rich, et al. 2020; Banilower et al. 2013; van Zanten & van den Heuvel-Panhuizen,
2018). The first step is to therefore ensure any standardized curriculum allows for the
exploration of higher-level theoretical thinking, primarily by allowing students the
time to reflect upon lessons learnt, rather than focusing on the pure output.

Therefore, you are likely to find that you will have to redesign lessons with the
specific intent to introduce opportunities to frame and prompt decomposition.
While potentially daunting at first, this will give educators a chance to further polish
lessons, by enabling them to think deeply about the instruction and engagement op-
portunities they are providing. (Rich, et al. 2020). Students, and teachers alike only
learn through engagement and application of these techniques. (McCormick, 2022).

22

Georginia Boyd
Aspire-Igen Group Ltd.

3. Pattern Recognition

3.1. Pattern Recognition definition
One of the key critical elements of computational thinking, i.e. pattern recog-

nition, is the identification of data with one or multiple similarities in a sequence.
(Howard, W.R. (2007). Other working definitions include looking for similarities
between new problems and problems that have already been solved, looking for sim-
ilarities and patterns between things, or identification of data with one or more sim-
ilarities in a sequence. (Rich et al., 2020; Howard, W.R. (2007).

In practical use, pattern recognition allows the user to solve problems quickly, by
applying solutions that worked in the past, provided the problem the individual pres-
ently faces is similar to those they encountered in the past. This, of course, requires
the user to observe and identify patterns, trends, and regularities in data, processes,
or problems (Yihaun, 2019). Most teachers and educators are likely to be already with
pattern recognition. Practical examples include asking students, ‘What did we learn
in the past which can help us find this solution?’

Though there are straightforward applications of pattern recognition in the main-
stream learning - primarily in mathematics, science, art – there is plenty of relevance
within vocational training and further into the world of work. In vocational train-
ing, pattern recognition is inherent in allowing students to practise manual work in
person to develop their skills. By developing pattern recognition skills, students can
relate current lessons to their future careers and gain perspective on what is needed
to succeed in their area.

3.2. Pattern recognition - benefits for teachers

Subject-Specific Benefits
While the relevance of pattern recognition can be seen in topics such as Maths,

Computing and IT, and Science, teaching pattern recognition can support students
across all subjects. Pattern recognition is simply a method of thinking, and the appli-
cations are wide-reaching and comprehensive.

For example, in the Uzumcu study, in which a group of educators applied various
computational thinking techniques, including pattern recognition into their lesson
plans, all the participants thought that the exercises were helpful in developing prob-
lem-solving skills. (Uzumcu, 2021).

23

3. Pattern Recognition

To give the context and clear examples, we have highlighted a few subjects which
benefit from the pattern recognition. These include mathematics, sciences, art & cre-
ativity, and languages – though it should be noted that pattern recognition is largely
applicable to all subjects.

In mathematics, pattern recognition is heavily used and effortlessly combined
with other computational thinking skills, such as algorithmic thinking. Research
shows that young people’s ability to recognize patterns forms the basis of an early
mathematical theory. When young people are taught to identify similarities, they will
ideally begin to apply these lessons across all subjects, therefore extrapolating lessons
learned in mathematics, i.e. how to change patterns, adapt, and find irregularities, to
other endeavours. (Department of Education, 2014).

In sciences, extensive research has shown that pattern recognition is a successful
method for learning scientific skills in areas such as medicine, chemistry, and en-
gineering. (Samarasinghe, 2006). In fact, pattern recognition plays a crucial part in
a genetic theory, and helps students conceptualize abstract and challenging concepts.
(See Hsu 2018).

In arts, pattern recognition assists in helping convey abstract and developmental
theory. For example, pattern recognition helps in the understanding of the develop-
ment and analysis process. (Shen, 2013). This understanding, identical to that used
with the aforementioned nursery rhymes, can also help with the creation of art.

Yet, perhaps the most common application of pattern recognition, apart from
music and math, is in linguistics. Much to the average student’s dismay, language is
almost exclusively taught through the use of patterns, at least in the classroom. The
theory is that learning a language using pattern recognition supports a more detailed
understanding of the way the language works. For example, a basic understanding
of languages can be developed and expanded using pattern identification to define
sentence structure, categories of writing, and vocabulary. (Larson 2010). Of course,
pattern recognition is not just limited to the above. Later, we will detail specific ex-
amples other educators used to incorporate pattern recognition into their subjects.

Pedagogical Benefits
Like many skills in computational thinking, pattern recognition is a solid foun-

dational skill for education. In fact, pattern recognition is already stressed in almost
every aspect of our lives and early education, with pedagogical practices within early
years typically integrating pattern recognition alongside traditional didactic teaching
practices such as explorative learning, questioning, scaffolding skills, and acquisition.
(Calderon, 2015).

As stated previously, the strength of pattern recognition is that it allows students
to tackle problems using universal methods. Therefore, rather than having to teach
students answers to every single problem individually, teachers instead must teach
pattern recognition and the adequate solution. This helps students to develop the
skills to understand complex concepts more quickly by demonstrating similar pat-
terns occurring across subjects. A classic example is teaching multiplication tables,

24

Computational Thinking for Teachers and Classes

particularly multiplication by a value of nine. Where a teacher could teach the stu-
dents every single value in the table, they could instead teach a pattern: the answer
can be derived by increasing the first digit by a value of one, while simultaneously
subtracting the second digit by a value of one, i.e. nine (09), eighteen (18), twenty-
-seven (27) etc.

As suggested previously, pattern recognition is particularly useful in linguis-
tics: there are many similarities (an therefore patterns) between Romance languages:
Spanish, Italian, and French, and the same similarities in ‘Germanic’ languages, in-
cluding German, English and Dutch. If a student is taught pattern recognition, and
knows one of the languages in the family, i.e. French, for example, it could be easier for
them to learn Spanish than Dutch – as more patterns and similarities (in vocabulary,
grammar, or sentence structure) are shared in linguistic families. This knowledge can
help students expedite their education, and help teachers more accurately plan lessons.

Pattern recognition could also help educate students on more abstract ideas, such
as the development of concepts. While describing a concept as an individual theory
can be confusing and may feel too unfamiliar to students, provided a teacher can cre-
ate a cognitive link for students, the lessons may be more easily understood as simple
progressions of familiar concepts thereby expediting uptake via the extrapolation of
familiar concepts.

Pattern recognition can also assist teachers. Studies indicate that a student’s grasp
of the fundamental building blocks are “uniquely predictive of higher level skills
above and beyond the effect of lower level skills” and act as a predictor of a student’s
academic success, subject retention, likelihood of progression, and graduation rates.
(Lockwood 2017; Haddad & Kalaani 2015). This knowledge allows teachers to iden-
tify students who may need additional support quickly.

Not only does this skill allow teachers to identify these students, it also helps
them support them, as teachers can quickly replicate teaching strategies for similar
students. Where one student with certain abilities and learning styles may have diffi-
culties with a particular subject, the teacher will be able to recognize similar traits and
use past experiences of successful methods with similar students to support them.

3.3. Pattern recognition - benefits for students
Alongside improving students’ confidence and acting as a force multiplier for

subject uptake, the skills learned in computational thinking - including pattern rec-
ognition - function as fundamental building blocks for a child’s education. Teaching
this skill provides the students with computational and critical thinking skills nec-
essary for students in the 21st century, regardless of their ultimate field of study or
occupation. (2014 Mannila). In fact, it is widely recognized that the ability to identify
and analyze structures for patterns is the foundation of understanding how one pro-
cesses information. (2014 Mannila). Effectively, teaching pattern recognition is akin
to both a teacher and the students on how to learn and study on their own – a vital
skill for every aspect of life.

25

3. Pattern Recognition

3.4. Challenges in teaching pattern recognition
While pattern recognition is found within the existing educational systems, it is

not always expressly identified. As with everything else, it may therefore be difficult
to expressly incorporate it into lessons, especially if a teacher is not familiar with
how to articulate such an innate concept. (Hsu 2018). Given the current demands on
teachers, it may be particularly difficult for educators to change teaching materials in
a short period of time. (Hsu 2018).

Therefore, it may be of some use to educators to have tested examples of this
integration. One such example can be found in France. There, the Chipranov study
(2016) integrated computational thinking skills, including pattern recognition, into
French elementary education via games and robotics while utilizing a whole-class
discussion and demonstrations. These would be followed by collaborative or indi-
vidual learning, and finally, students would be encouraged to reflect on the solution,
skills, and techniques learned. (Chiprianov 2016). Some of the benefits of this mul-
ti-tiered approach was increased retention rate, alongside this important capacity for
students to apply the skills learned within the classroom to alternative challenges.
(See Chiprianov 2016.)

Further refinements were proposed by Burgett (2016), who suggested creating
lesson plans which are designed to show how these skills already exist in students’
lives and approaches to education that help with the concept uptake. This “hands
on approach” is a vital edge if you happen to encounter issues similar to those noted
by Mooney, et al. (2014) who found in the study that students found the potential-
ly abstract concepts of computational theory challenging if presented with merely
theoretical, and abstract approach. Teachers can also ‘prompt’ students, encouraging
them to use the strategies when tackling the problem. (Rich, et al., 2020). This can be
done by asking them to identify where and how they have used them and how they
have contributed to solving problems. (Rich, et al, 2020). In essence, this approach
hinges on the conceptualization of the pattern recognition practices as general prob-
lem strategies that could be applied to a variety of problems. (Rich, et al. 2020).

An example of a more hands on approach can be found in the Mannila study
(2014) There, nursery rhymes were used to link middle-school students with the
practice of pattern recognition. This was chosen to try and teach pattern recognition
to students through a medium they were already familiar with. Pupils were told to
collect nursery rhymes from home, analyze them, then identify structural patterns
within them (i.e. prologues, repeated refrains, and epilogues). Students were then
told to use these pattern recognizing skills in an entirely different manner, by build-
ing “toy machines” of cardboard and other cheap materials (effectively flash cards),
with the aforementioned pattern components written on them. Then, students were
encouraged to “mix-and-match” the nursey rhymes according to the patterns they
identified before to create entirely new nursey rhymes. (Mannila 2014). This, in the-
ory, allowed students to begin to apply empirically and consciously what was previ-
ously a subconscious unspoken theory.

26

Computational Thinking for Teachers and Classes

3.5. Integrating pattern recognition into lessons
Despite the aforementioned potential shortfalls of quickly integrating a new

theory, pattern recognition can, and has been expressly and successfully integrated
into classrooms globally. (Yihaun, 2019). This successful integration is not limited to
traditional computer science of STEM course, as even though pattern recognition
is vital for computational thinking and programming, it facilitates problem-solving
across all subjects. (Yihaun, 2019).

In particular, one study of over 116 middle and high school mathematics, sci-
ence, social studies, and English teachers provides very useful examples of pattern
recognition being successfully integrated with the existing resources into the class-
room. (Yihaun, 2019).

For instance, high school history & English language arts teachers were able to
create a historical puzzle and roleplaying games for their students to explore life in the
Middle Ages. The students were primed before these puzzles and games to identify
patterns within them, as well as within historical narratives, story beats, and events.
(Yihaun 2019). There is a potential to further develop on this model, by encouraging
students to use the patterns they recognized in past periods to predict what they
would encounter in the next period in history.

In the science sector, students of the sixth to the tenth grade were able to integrate
pattern recognition directly into their exam via the Rock & Mineral Quiz. Being ex-
posed to an exploratory lab activity, these students were challenged to apply pattern
recognition when measuring different rock & mineral properties. They would then
record these results and use them to create educated predictions of future properties
in different samples. These predictions would then be tested, further refining stu-
dent’s knowledge of mineral properties. (Yihaun 2019).

Meanwhile, at the University of North Florida, the USA, students were encour-
aged to use pattern recognition skills to build “concept maps” in English: helping stu-
dents recognize patterns in writing structures and give them a formulae which could
be used to help them “write clearly”. (Howell et al. (2011). This pattern recognition
skill was also applied to song lyrics, creating storyboards for drama, and identify-
ing recurring symbolism in literature & media. Building on these ideas, the students
could also be encouraged to identify repetition in game rules, media characters (i.e.
tropes), riddles, poems, graphs, individual & group behaviour (Phycology).

Even in the American Bar Exam, patterns play a vital role, with prospective appli-
cants learning through experience that out of the four potential options in any given
question, two tend to outright contain legally inaccurate assertions, leaving the last
two options to test the aspirates legal instincts and reasoning skills.

3. Pattern Recognition

Regardless of the context, exercises for discovery and step-by-step learning have
been shown to assist with learning and understanding complex topics. (Lockwood
2017). Teachers may find that pairing up students in collaborative learning environ-
ments may help to make the new skills more comfortable, and for the pairs to help,
refresh, discuss, and test each other’s knowledge. (See Isbell, et al 2010).

28

Computational Thinking for Teachers and Classes

Chrysanthi Konstanti
Eftychia Xerou

Centre for Advancement of Research
and Development in Educational TechnologyLtd.

4. Abstraction

What is abstracting?
Abstraction is the ability to simplify and generalize complex problems or data to find

their crucial essence. It is one of the components of computational thinking, which com-
bines the results of the two preceding processes: decomposition and pattern recognition
into a qualitatively new whole that shows the essence of the problem being addressed.
Problem abstractions that result from abstraction are definitions of this essence and help
to organize and simplify the problem. Abstraction is important not only in computer sci-
ence, but also in other fields of knowledge, such as mathematics, physics, biology or art.
An excellent example is abstract painting. Abstraction helps us discover patterns, rules
and principles that govern the world. Abstraction is also part of our everyday life when
we use symbols, metaphors, diagrams or models to better understand and communicate
with others. Single words, such as a house, a horse, or time, for example, are abstrac-
tions of large groups of objects or basic concepts. The ability to extract, verbalize and use
abstractions is therefore a key skill, important in teaching various school subjects, as it
helps explain and clarify difficult concepts in a way that is simple and understandable to
students. Abstraction is also a way to develop creativity and imagination, as it encourages
us to create new and original ideas. Abstraction is not only a central concept in computer
thinking, but also an important part of education and culture.

Figure 1: Basic elements of computational thinking.
Source: Elements of Computational Thinking. | Download scientific diagram (researchgate.net)
License: Creative Commons Attribution 3.0 Unported - CC BY 3.0

https://www.researchgate.net/figure/The-elements-of-computational-thinking_fig1_333826796
https://creativecommons.org/licenses/by/3.0/

29

4. Abstraction

Abstraction is particularly useful in solving complex problems because it allows
one to focus on the essential features of an object and ignore irrelevant details that
may be hidden, enabling the problem solver to better understand what is going on
(Koppelman & Van Dijk, 2010). Gaining experience in problem solving means being
able to determine what level of abstraction is appropriate for a given stage of problem
analysis, solution design and solution implementation (Haberman & Muller, 2008).
Abstraction emphasizes the process of removing details to simplify and focus atten-
tion, and emphasizes the process of generalization to identify the common core or
essence (Kramer, 2007). According to Koppelman and Van Dijk (2010), abstract-
ing involves the following characteristics: (a) generalization of specific examples;
(b) identification, extraction and isolation of relevant components; and (c) ignoring
or excluding irrelevant details.

One of the international initiatives aimed at popularizing computational think-
ing and digital competence is Bebras (https://www.bebras.org), which recognizes ab-
straction as the most important, though undervalued, competence. Bebras offers the
so-called “Bebras challenge,” which involves teachers introducing participants to the
use of computers or mobile devices. From November 2022 to April 2023, more than
3 million participants from 59 countries took part in the challenge, and it is contin-
uing. Algorithms (66%) and data representation (38%) were the dominant themes
of computational thinking in Bebras tasks between 2010 and 2014. Abstracting was
identified as an important topic, occurring in 16% of the tasks (Barendsen et al.,
2015). While researchers have agreed that abstraction is a central concept in compu-
tational thinking, there is no consensus on how to implement it or shape it in educa-
tion (Cetin & Dubinsky, 2017), although there is no doubt that it is an important part
of culture and learning.

4.1. The importance of teaching abstraction
Wing (2006) stated that thinking like a computer scientist requires the use of ab-

straction in many stages of thinking. Abstraction is a key concept and one of the most
fundamental ideas underlying computer science and its practice (Armoni, 2013). The
concept of abstraction is often used in different ways, depending on the subject being
taught. Abstractions in computer science and data analysis are common and obvious
(Dorodchi et. al., 2021). However, students should be aware of the different levels of
abstraction, i.e. the degree of generalization of information, and recognize the advan-
tages of consciously moving between levels of abstraction when necessary, because of
the need to include certain details (Hazzan, 2008).

4.2. Challenges in teaching abstraction
The age at which children can understand the concept of abstraction and learn to

abstract is sometimes determined by Piaget’s classic work, often cited in the educa-
tion literature. Piaget suggests that children cannot learn to abstract until they reach

https://www.bebras.org

30

Computational Thinking for Teachers and Classes

the fourth stage of cognitive development, the stage of formal operations. This usual-
ly happens around the age of twelve (Cetin and Dubinsky, 2017). The hallmark of the
formal operations stage is abstract thinking, which allows one to cross the boundary
of time and space, with an understanding of the constancy of certain general proper-
ties of objects, such as mass or volume, retained despite a change in the shape of the
object, e.g. a ball of plasticine rolled out into a roller or a pancake. Teaching abstrac-
tion to novices is therefore a very difficult task, according to many experts (Armoni,
2013). Even computer science students tend to lower the level of abstraction, or more
accurately, they unconsciously use cognitive mechanisms that allow them to make
concrete sense of abstract concepts (Hazzan, 2008).

It is very important to teach general abstract concepts rather than partial abstract
concepts, as this may not be enough to understand abstraction mechanisms (White
& Mitchelmore, 2010). It is especially important for novices to develop abstraction
skills, which poses a challenge to them. Spontaneous use of abstraction is difficult for
novices because of the natural tendency to rely on a familiar procedure when we need
to solve a new problem (Koppelman & Van Dijk, 2010).

The issue regarding the teaching of abstraction is whether to devote an entire
course to the idea of abstraction, or to mention abstraction on various occasions in
other courses when appropriate (Hazzan, 2008). Ensuring that abstraction is proper-
ly implemented in education lies in its good understanding by teachers. In particular,
it is very important for teachers to be able to determine whether a problem-solving
algorithm is an abstraction itself, whether it is necessary to abstract at all in order to
create a design, or whether the overall program of conduct is at a different level of
abstraction than the problem-solving algorithm (Waite et al., 2018).

4.3. The need to teach abstraction
Successful mastery of abstraction requires, firstly, knowledge of abstraction it-

self, and secondly, teaching the process of abstraction and how to consciously move
between levels of abstraction (Hazzan, 2008). Students’ awareness of the nature of
abstraction, the existence of different levels of abstraction, and the skills and men-
tal processes that enable them to abstract and move between levels of abstraction
can enhance their educational and, in the future, professional skills (Hazzan, 2008).
Research indicates that understanding Levels Of Abstraction (LOA) and the ability to
move between levels is also essential for success in programming (Waite et al., 2018).

4.4. Teaching abstraction
According to Hazzan (2008), students must first see and experience abstraction,

and only then can they abstract the first general ideas from the set of elements ob-
tained through decomposition and subjected to grouping during pattern recogni-
tion. Based on this approach, the authors suggest the following three ways in which
general abstraction ideas can be presented to students (Figure 2).

31

4. Abstraction

Figure 2: Teaching abstraction.

The results of the research presented in White & Mitchelmore’s (2010) article
showed that the four-step model for teaching abstraction provides effective mas-
tery of abstract general concepts for students on popular topics in the middle school
mathematics curriculum. The research also sheds light on what makes up the four
phases shown in Figure 3 and the challenges of putting them into practice.

Figure 3: Teaching abstraction.

32

Computational Thinking for Teachers and Classes

Haberman and Muller (2008) presented two approaches to teaching abstraction.
1. Pattern-oriented teaching shows abstraction patterns at the beginning of classes.

Topics introduced later are organized around the patterns, but their content does
not relate to abstracting, only to the subject matter.

2. The use of abstract data types (ADTs) in problem solving and knowledge rep-
resentation is dominating the curriculum.
It can also be helpful to encourage the creation of a model of the phenomenon un-

der discussion. Preparing a model requires obtaining a comprehensive step-by-step
picture of the abstract concept being modeled and requires extracting the essence of
the concept beforehand while understanding what needs to be done (Dorodchi et al.,
2021).

4.5. Abstraction in practice

Abstraction, in computer science terms, is a simplified set of actions or features
of a program that explains its essence, leaving out unnecessary details and technical
complexities. Abstraction allows an efficient transition from many details to the gen-
eral. Examples of abstraction:
1. Baking a cake: divide the baking process into steps, identify common ingredi-

ents and procedures, and create a generalized set of instructions that others can
follow. An example abstraction (the essence) of baking a cake is: measuring the
ingredients into a bowl, mixing them, and placing the dough-filled baking pan in
the oven for a certain amount of time. By using such an abstraction, after adding
the details of the recipe, you can successfully bake a cake.

2. Driving using maps: Public transportation maps are abstract. Maps only show
important information, such as stops and general direction, and leave out the
finer details. By omitting the details, you can intuitively determine your preferred
route from the many options available, rather than evaluating every turn or po-
tential reroute.

3. Describing a bicycle: When we talk about a bicycle, we tend to use selective in-
formation to describe it. We usually mention its type, such as a mountain bike or
a road bike, and give a basic description of its color. However, if we are talking to
someone who is really interested in bicycles, we can go into further detail. We can
discuss frame material, tire size, gear ratio, suspension type, and even make and
model (“Examples of Abstraction in Everyday Life”, 2022).

Abstraction is also worth showing using programming languages as an example.
Most programming languages are sets of abstract commands, hiding the complex bi-
nary instructions used by computers. Programming languages also offer commands
and keywords, such as “print” and “load,” that abstract their purpose or expected
result from a sequence of complex tasks. In the popular children’s programming

4. Abstraction

language Scratch, there are various “bricks” - graphic blocks that are abstractions of
background operations. These blocks (Figure 4) visually represent the steps to be per-
formed, allowing users to intuitively understand the flow and purpose of the process
(Parry, 2021).

Figure 4: Scratch blocks showing steps that are hidden from the user in their signatures.

34

Chrysanthi Konstanti
Eftychia Xerou

Centre for Advancement of Research
nd Development in Educational Technology Ltd.

5. Algorithmization

5.1. Alghorithmic thinking definition
Algorithmic thinking is the ability to construct solutions to problems in a way

that produces repeatable results in a variety of fields, not just science, mathematics
and logic (Mezak & Papak, 2018). An algorithm is like a recipe for preparing a dish,
where each step is precisely described and must be done in a specific order (Peel &
Friedrichsen, 2018).

Algorithmic thinking is the ability to identify the basic steps to solve a given
problem in a way that is appropriate to its specifics and takes into account possible
special and typical situations in order to ensure the best performance of the algo-
rithm (Hromkovic et al., 2017).

5.2. The role of teaching algorithmization
Algorithmic thinking is both one of the pillars of computer science and a core

competency (Malik, et al., 2019). It is a skill that requires the flexible application of
knowledge from different disciplines to solve everyday, real-world problems (Sarı,
et al., 2022). In the current digital age, algorithmic problem solving is considered an
important skill for both society and in any work environment, making it a core com-
petency (Evripidou, et al., 2021).

5.3. Challenges in teaching algorithmization
Many students find algorithms a difficult and unattractive subject. Often, tradi-

tional courses focus on learning specific algorithms that are considered important
in education or in practice (Futschek & Moschitz, 2010). Dugan (2020) emphasizes
the importance of training teachers in algorithmic thinking and states that it is very
important that teachers, who have an unassailable place in the education system, are
well trained, as they are expected to prepare students, who are the other basic element
of the system, for the future.

35

5. Algorithmization

5.4. The need to teach algorithmization
There is a need for practical research on how to develop algorithmic thinking and

what kinds of activities and educational content can be used in classrooms (Sarı et al.,
2022). Algorithmization skills are becoming increasingly central to various aspects
of our daily activities, especially after being enhanced by the power of computers and
robots (Evripidou et al., 2021).

5.5. Teaching algorithmization
Introducing students to algorithmization should take place at a very early stage

of teaching computational thinking, using the spiral curriculum of Hromkovic et al.
(2017). Students should practice designing algorithms in a structured way from the
very beginning, refining detailed competencies in later stages of education. In a spiral
curriculum, algorithms are introduced in elementary school, and their improvement
continues in secondary education. The authors point out that problems given to stu-
dents as tasks to be solved should not be too simple, but their description should be
easy to understand.

Visualizations of algorithms are also a teaching method that is very useful and
effective (Futschek & Moschitz, 2010). According to the authors, learning the prin-
ciples and concepts of algorithmization with the use of visualizations is much easier
for students to understand, and makes activities using visualizations prepared in such
a way that they are fun for students. The teacher’s task in this method is to formulate
problems that are appropriate to the student’s level of competence and ask questions
that encourage students to think towards creating correctly working algorithms to
solve these problems. The teacher also motivates students to improve their algo-
rithms to find even more effective solutions. Futschek (2006) suggests a wide range
of computer science topics that can encourage students to use algorithmic thinking,
especially with the use of visualizing algorithms in the form of a program-tool or
a game made by the students themselves.

It is worth noting that teachers play a very important role as personal role mod-
els of algorithmic thinking. Teachers participating in one study (Dugan, 2020) con-
firmed that with well-developed algorithmic thinking skills, they tend to teach in
spirals, follow a process that facilitates learning, encourage students to plan well and
develop algorithms neatly, and help them develop/improve their algorithmic think-
ing skills. They also suggested using techniques such as discovery learning, problem
solving, induction, brainstorming, concept mapping, games, discussion, fishbone
and case study, which require students to be actively involved in the learning process
to improve their algorithmization skills. In teaching algorithmization, one can also
use the image of a box of bricks, in which only a few basic elements are available,
from which children can create both simple and complex structures (Milkova, 2012).

36

Computational Thinking for Teachers and Classes

5.6. Resources to support the learning of abstraction and algorithmic
skills

Teaching activities on computer thinking, including abstraction and algorith-
mization, can be conducted with or without computers, software or digital tools.
Activities without computers (“unplugged”) focus on developing computer thinking
skills through tangible and interactive exercises, using paper instructions, visuali-
zations, figures and physical movement as representations of operations performed
by computer programs (Sigayret et al., 2022). However, the most common approach
used is a combination of “connected” and “unconnected” approaches.

Educational tools that support the formation of competencies related to com-
putational thinking and alliteration discussed in this chapter include “cMinds”. The
cMinds program is an educational intervention that provides logic challenges to de-
velop problem-solving skills and analytical thinking abilities through game-based
learning. The cMinds Learning Suite encourages students to analyze problems, iden-
tify the basic components of a solution, critically combine different components, op-
timize their solutions and reflect on their thinking process (Tsalapatas et al., 2012).

TeaEdu4CT is one of the projects combining computer-free and computer-en-
abled approaches that focuses on innovative educational methods for computer
thinking (CT) in the context of transdisciplinary and holistic STEM (science and
technology subjects) perspectives in teacher education (https://www.fsf.vu.lt/ct-
4teachers#about-the-project). The project provides a set of tools, techniques and
approaches that facilitate a seamless transition from computer- and Internet-free ac-
tivities suitable for young children to advanced computer modeling and simulation
for high school and early college students.

The Tech Interactive, an organization driven by a mission to promote compu-
tational thinking (CT), creates and distributes high-quality STEM educational re-
sources that are attractive to students, allowing them to quickly integrate elements
of computational thinking into their teaching. For example, abstraction, which de-
scribes natural phenomena with succinct statements, is practiced through a wide
range of experiments. Algorithmization, on the other hand, is a set of instructions, or
“procedure,” aimed at performing one of these laboratory experiments in the class-
room. Examples of educational resources, lesson plans and activities for teachers
and students can be found on the Tech Interactive website, https://www.thetech.org/
educators-students/resources/lessons-activities/computational-thinking/.

5.7. Algorithmization in practice
On a daily basis, we encounter different types of algorithms that perform specific

steps (linear processes), make decisions (conditional algorithms) or repeat actions
a certain number of times (looped algorithms). Algorithmization seems like a com-
plex process, but algorithmizing many everyday activities comes naturally to us. Here
are three examples to cite:

https://www.fsf.vu.lt/ct4teachers#about-the-project
https://www.fsf.vu.lt/ct4teachers#about-the-project

5. Algorithmization

1. Tying shoes: Step-by-step, often automatic activities that are consistently per-
formed in the same way many times, such as shoe tying, can be considered an
algorithm. The process of obtaining a traditional shoelace knot, often referred to
as a loop or a bow, can be done with a very simple, limited set of steps: “loop, pull
through eyelet, tighten”.

2. Recipe algorithm: Any simple recipe for cooking or baking can be considered
an algorithm. In a recipe there is a sequence of operations, a description of the
conditions, a repetition of the steps needed to successfully complete the recipe.
Algorithmizing recipes is a useful exercise, promoting algorithmic thinking and
demonstrating the ubiquity of algorithmization.

3. Driving to or from some place: The act of driving, for example from home to
school, can be an algorithm. Like any other algorithm, this routine can collide
with obstacles, such as roadworks or heavy traffic, which can prompt decisions
based on the conditions encountered. If there are roadworks on street X, turn
right (“7 Examples of Algorithms in Everyday Life for Students,” 2023).

38

Panagiotis Psomos
Innovation Frontiers

6. The CTApp Game. The idea, the structure and its functionalities

The development of a new mobile app to strengthen computer thinking skills can
support education and empower students. The CTApp app aims to engage and moti-
vate students, especially those who may be disadvantaged, to acquire basic computer
thinking skills. By fostering a love for problem solving based on a computational ap-
proach and preparing students for an increasingly technology-driven world, the app
aims to make a lasting impact on their lives and their future. What is more, this in-
novative approach to education aims to improve teachers’ professional development
and equips them with the tools they need to introduce innovative classroom practices
in collaboration with their students.

The idea behind the CTApp Game
Computational thinking skills have become important for students to thrive edu-

cationally, professionally and personally in today’s rapidly changing world. The abili-
ty to grasp and apply the ideas of computer thinking has become a key skill set as the
digital world continues to change our civilization.

Computational thinking is a methodical approach to problem solving that is
based on the principles of computer science and logic. It allows people to deconstruct
difficult issues into manageable components, analyze data and develop new solutions.
Students gain competence in dealing with the complex challenges of today’s world by
developing computer thinking skills.

The ubiquitous integration of technology in many areas is one of the prima-
ry reasons why developing and strengthening computer thinking skills is crucial.
Technology permeates virtually every business, from artificial intelligence and robots
to data analytics and cyber security. Computational thinking skills provide students
with a foundation for effectively understanding and using technology, enabling them
to adapt to the ever-changing demands of the digital age.

Moreover, computer thinking encourages critical thinking, creativity and logical
reasoning. It teaches students to approach issues methodically, see patterns and cre-
ate efficient algorithms. These cognitive skills go beyond computer science and can
be applied to many fields, including mathematics, physics, business and the human-
ities. Students with computational thinking skills are better prepared to deal with
difficult issues, make informed decisions and make important contributions in their
chosen fields.

One of the main goals of the application is to improve teachers’ professional devel-
opment. By providing a comprehensive tool to support the teaching of computational

39

6. The CTApp Game. The idea, the structure and its functionalities

thinking, teachers can gain valuable insights into the subject and develop their own
knowledge. The app offers teachers a platform to expand their knowledge, learn new
teaching strategies and stay abreast of the latest developments in teaching computa-
tional thinking. This professional development not only benefits the teachers them-
selves, but also has a direct impact on the quality of education they provide to their
students.

Continuous professional development is essential for teachers to remain effective
and adapt to the changing needs of their students. In this regard, the app serves as an
aid to teachers. Teachers can deepen their understanding of computational thinking
concepts and improve their teaching practices. The emphasis on ongoing profession-
al development allows teachers to become educational leaders and mentors, which
ultimately benefits both themselves and their students.

In addition to simulating professional development, the CTApp app aims to sup-
port teachers in undertaking innovative and collaborative practices in the classroom.
By facilitating the implementation of innovative teaching methods, the app encour-
ages teachers to think creatively and adapt their teaching methods to meet the diverse
needs of their students. This support for collaboration and innovation contributes to
the development of a dynamic and engaging learning environment that effectively
reinforces computational thinking skills.

The development of a mobile app dedicated to strengthening computational
thinking skills is a significant step toward equipping students with the tools they
need to succeed in the digital age. By activating teachers’ professional development,
supporting their continuous learning, and promoting collaboration and innovative
practices, the app enables teachers to become catalysts for change in the education
system. Ultimately, the initiative aims to close the gap in education in terms of com-
puter thinking, especially for disadvantaged students, and ensure that all students are
prepared to thrive in the world dominated by computers and technology. By provid-
ing a robust tool to support school curricula and enriching the toolkit for teachers,
this application can improve education and shape a better learning environment.

The structure of the CTApp Game & its Functionalities

Entering the CTApp Game
The CTApp game is set in an escape room (puzzle room) and is readily available

to both Android and iPhone users via the Play Store and App Store, respectively.
When users open the game, they are greeted by the distinctive CTApp project logo,
which is complemented by a background depicting a learning area. In addition, a set
of logically arranged buttons is visible to help smoothly navigate the app.

Key among the buttons is the Start button, which acts as an entry point into the
world of question-based challenges. If users decide to leave the app, an exit button
is prominently placed to ensure a smooth exit. The app also has a settings button
that allows users to personalize their experience. Users can easily change music and
sounds using this button to adjust the sounds to the way they like it. When users

40

Computational Thinking for Teachers and Classes

launch the app, music accompanies them as they play, improving the experience and
engagement. Users also enter their name and corresponding avatar at the beginning,
which can be changed later.

When starting the game, you can also choose to play with another person. To do
this, press the “Multiplayer mode” button. Two characters can be selected for game-
play, whose personalization is carried out independently. Players play on one device.
After one participant completes the level, the game can be started by the other stu-
dent. Scores are calculated independently for each participant.

Users can easily use the app thanks to the availability of CTApp Game on Android
and iPhone platforms, a user-friendly layout and a convenient set of buttons for start-
ing, exiting and changing settings. The intriguing background of the learning area
sets the tone for the experience, while the ambient music adds a touch of calm and
positive emotions. CTApp Game ensures that each person can tailor their engage-
ment with the app to their own tastes and preferences, giving users a choice.

CTApp Game is designed for a diverse audience, with versions available in
English, Italian, Polish and Greek. Users who speak these languages will be able to
access the app and its content in their native language. The app is user-friendly and
offers translated versions of the questions, providing a positive experience for a range
of diverse users.

Navigating through the Menu
Students are greeted with an intuitive menu interface that appears on the screen

when they click the Start button to begin the main game. This menu acts as a portal
to four distinct stages, each of which represents one level in the game. The first level
consists mainly of theoretical questions about computer thinking and its key stages,
which require users to demonstrate their expertise by providing correct answers. As
users progress, the next three levels provide a series of practical problems that must
be solved to successfully complete the game.

Practice questions are assigned to the three levels according to their varying
levels of difficulty. As a result, each successive level provides slightly more difficult
questions than the previous one, ensuring gradual learning. To progress through the
game, users must successfully complete each level before moving on to the next one.
When users begin using the app, they only have access to the first level, which con-
sists of theoretical questions and requires informational preparation of users during
introductory computer thinking classes.

Users are given a clear and chronological path to follow. Going through the game
in this way allows users to get a sense of success as they complete each level. The
progression system ensures that users continually improve their understanding of
computer thinking and their ability to use the competencies they acquire, allowing
them to tackle increasingly complex problems as they progress through the game.

In summary, when users launch the main game by pressing the Start button, they
are greeted by a user-friendly menu screen with four separate levels. The first lev-
el contains theory questions, while subsequent levels contain increasingly difficult

41

6. The CTApp Game. The idea, the structure and its functionalities

practice questions. Users have the option to move to the next level after successfully
completing the previous one. This sequential structure promotes skill development
and provides a rewarding experience for users who want to improve their knowledge
and competence in the game. With its hint system, the game can be a standalone re-
source for inquisitive users, but it can also be woven into the educational process as
a support tool, used as part of homework assignments or even in lessons, thanks to
its multiplayer mode.

Playing in the CTApp Game
When users enter the first level, they are greeted by a study area equipped with

ordinary items such as desks, chairs, bookcases, globes, lamps and more. Each area
in the game has a specific theme and is decorated with various ordinary objects. One
of the areas contains mathematical symbols, such as the plus sign and the pi symbol.
The varied designs of the areas provide users with a stimulating experience while
going through the game.

Navigation assistance is provided by a button in the lower left corner of the screen
that allows users to move the avatar right, left, backward or forward. Touching and
moving the screen in other places allows users to change their perspective, allowing
them to look up or down the room and rotate the view.

Upon entering the study room, the timer starts counting down five minutes.
During this time, users must complete answering a set of questions prepared exclu-
sively for that level. Some items in the study room are highlighted because they act as
“key items” that contain sets of questions. When an item is marked as a “key item,”
a green box appears above it, reflecting the number of questions correctly answered
in that set in previous attempts. For example, if no questions in the set were answered,
a message will appear above the corresponding “key item” with the name of the item,
such as: “Projector 0/16”. When the name of the item is touched, a series of questions
or tasks is displayed.

Some “key items” are immediately visible and highlighted as soon as users enter
the area. Other “key items” get marked only when users approach them and then
a green box appears representing the number of unanswered questions.

Users can begin answering questions from easily visible “key elements” as soon
as they enter the room. After answering a series of questions, users are prompted to
explore the survey area further to find the next set of questions, which are stored in
other “key elements.” A green box above these additional “key elements” identifies
them and becomes visible only when users approach them. With the above features
of the interactive learning room, users gain control of the game and increase engage-
ment. The game encourages exploration and engagement, motivating users to use the
learning space extensively and actively seek out the next set of questions.

In summary, when students arrive at the first room, they are greeted by a learn-
ing space containing a variety of items. They are free to roam the room, pressing
on-screen buttons to travel in different directions. A countdown begins, signifying
the need to complete sets of questions in a certain amount of time. Some items in

42

Computational Thinking for Teachers and Classes

the study room are “key items” and contain question sets, as indicated by a green box
above them.

Some of the “key items” are immediately visible, while others get the “key item”
designation only when users get closer to them. Users can start answering ques-
tions from the visible “key items” and then move around the learning space to find
further sets of questions placed in additional “key items.” This interactive learning
room concept emphasizes autonomy, engagement and extensive exploration of the
environment.

The questions
When a user clicks on one of the identified ‘key elements’, the first pop-up ques-

tion is displayed to them. Each question follows the same structure. The question is
clearly displayed at the top of the pop-up and users have a choice of four possible
answers. Once the user has made their choice, the pop-up provides quick feedback,
showing whether the chosen answer is correct or incorrect. In addition, an explana-
tion box is displayed along with the feedback, showing users the mindset to adopt in
order to arrive at the correct answer.

Once all the questions in the set have been answered to a sufficient level of cor-
rectness, a pop-up appears with the message ‘level completed’. When the user gives too
many wrong answers, a pop-up window appears with the phrase ‘try again’. This pop-
up contains two options: a restart button, which allows visitors to try answering the
questions again, and a ‘go to home page’ button, which displays the main menu to users.

The use of pop-ups provides users with a dynamic and engaging experience.
Displaying questions, answer options, feedback and explanation boxes in pop-up
windows allow for efficient and accurate delivery of information and engage students
in learning new competencies. Whether users answer correctly or incorrectly, the
game provides quick feedback and alternatives for next steps, promoting persistence
and encouraging learning.

In summary, after selecting a ‘key element’, visitors are presented with the first
question in a pop-up window. The layout is identical across all questions, with the
question on the left and four answer options below. Users receive quick feedback on
their answer, along with an explanation box showing a suggested thought process.
Completion of all questions within a set time period results in a pop-up window
commemorating ‘completed level’. If a large number of incorrect answers are given,
a second pop-up appears, giving the user the choice of restarting the level or return-
ing to the main page. The use of pop-ups throughout the game provides a dynamic
experience for users.

Here is an example of a theory question belonging to level 1 (theory questions):

Which of these phenomena is an example of decomposition?
A. Writing out the individual ingredients of a dish from a recipe.
B. Checking that you have all the utensils you will need to make a dish from a recipe.

43

6. The CTApp Game. The idea, the structure and its functionalities

C. Thinking about different ways to do the cooking according to a recipe.
D. None of the above.

In this example, the correct answer is A. The explanation is: ‘Decomposition in-
volves breaking down a problem into smaller parts’.

Here is an example of a question belonging to Level 2 (questions with a difficulty
level of 1).

In order to fly to Mars, follow the steps below in the order given:
A. build a rocket, determine the flight trajectory, run the engines to full power, upload

the flight target data into the computer, calculate the operation cost, develop a de-
tailed plan of operations, gather information on the key flight challenges and risks,
assemble the crew.

B. develop a detailed plan of operations, gather information on the key flight challeng-
es and risks, assemble the crew, build a rocket, determine the flight trajectory, run
the engines to full power, upload the flight target data into the computer, calculate
the operation cost.

C. gather information on the key flight challenges and risks, develop a detailed plan
of operations, calculate the operation cost, assemble the crew, build a rocket, deter-
mine the flight trajectory, upload the flight target data into the computer, run the
engines to full power.

D. assemble the crew, gather information on the key flight challenges and risks, build
a rocket, determine the flight trajectory, run the engines to full power, upload the
flight target data into the computer, calculate the operation cost, develop a detailed
plan of operations.

In this question, the correct answer is C. Here is an explanation: “Computational
thinking involves breaking down complex tasks into smaller, more manageable parts
and using a logical approach to solve them. This order of operations can be used to
solve real-world problems in learning or in everyday life.”

NOTE - the above examples are fictional, such questions do not occur in the game!

The steps of listing all the elements, recognizing the rules that connect the ele-
ments, defining the rules to be applied and preparing the step-by-step instructions
are based on a computer-based approach to problem solving, with each step follow-
ing from the previous ones.

Completion of the game
When users have successfully answered the questions in a given level, a pop-up

window will appear congratulating them and informing them that the next room has
been opened. Users can move on by returning to the main menu and selecting the

Computational Thinking for Teachers and Classes

next level. There is also a pause button at the top right of the screen, allowing players
to stop the game at any time and resume.

With its multi-level structure and dynamic action, CTApp Game is a useful tool
for young users who want to improve their computer thinking skills. The software
also supports teachers who want to develop computational thinking in the classroom.
The game encourages users to think critically, analyze issues and use logical thinking
to arrive at answers, offering a range of challenging questions and puzzles. Users are
encouraged to improve their problem-solving skills.

45

Robert Porzak
Lubelska Akademia WSEI

7. Integrating CT with curricula and classes

Computational Thinking in schools
The previous chapters described Computational Thinking as a skill that helps

students learn the logic and principles behind technology and coding. It is not about
memorizing facts or commands, but about thinking critically and creatively. Students
can practice computational thinking without using a device, so it can be part of any
classroom, even for younger learners. Computational thinking is becoming an essen-
tial skill for students, as it prepares them to understand and use the technologies of
the future. It is not an additional, time-consuming task for teachers but can be rather
integrated into the existing routines and curricula to save time (Yadav et al., 2017).

The reason why computational thinking can save time in the school curriculum
is that it can help students learn other skills more efficiently and effectively. For ex-
ample, computational thinking can help students understand the logic and structure
of math, the rules and patterns of languages. By applying computational thinking to
these subjects, students can grasp the underlying concepts more easily, avoid com-
mon mistakes, and solve problems faster (Flórez et al., 2017).

Computational thinking can help students develop higher-order thinking skills
that are essential for the 21st century. These skills include critical thinking, creativ-
ity, collaboration, and communication. By learning computational thinking, stu-
dents can improve their ability to analyze information, generate new ideas, work
with others, and express themselves clearly. These skills can help students succeed
in various academic and professional fields, as well as in their personal lives (Pérez-
-Marín et al., 2020).

Computational thinking can help in teaching vocational schools students as well.
When applying CT in vocational school, teachers should guide students to think
about the intention of the individual step, not make students just follow the steps.
“Unlike traditional teaching methods, the teaching method based on computational
thinking not only train students’ awareness of the computing environment, but also
help them to master solving methods of typical computing environment oriented.
In a word, if teachers in higher vocational colleges want to teach a course using the
teaching method based on computational thinking, they should:
a) decompose the course into knowledge points,
b) determine the emphasis and difficulty of the task, confirm the content the stu-

dents need to grasp,
c) design the corresponding experimental models, constructing computing envi-

ronment,

46

Computational Thinking for Teachers and Classes

d) optimize the problem solving process,
e) verify the experiment results and check consistency” (Shuiyan He et al., 2014, p. 819).

Therefore, computational thinking can be a valuable addition to the school cur-
riculum, as it can help students learn other skills more quickly and effectively, as well
as develop higher-order thinking skills that are crucial for the future. Computational
thinking can also be fun and engaging for students, as they can use it to create games,
animations, stories, art, music, and more. Computational thinking can be integrated
into various subjects and activities in the school curriculum, such as math, science,
language arts, social studies, art, music, physical education, and extracurricular clubs.
By teaching computational thinking to students, educators can prepare them for the
challenges and opportunities of the digital age (Grover & Pea, 2018).

You might think that these elements are too advanced for younger students, but
they actually fit well into the active learning and thinking that happens in primary
or secondary school grades. Children love to play and explore. They are not afraid
to try new things. By using their natural curiosity and problem-solving skills, we can
help them develop computational thinking. Computational thinking makes learning
fun, but also gives it structure so that the skills students learn can be applied to more
complex tasks later on. And you might be surprised by how easy it is to invite your
young learners to join you as inventors and problem-solvers and dive into the world
of computational thinking. It is also good to mix the approach focused on teaching
computational thinking with the project-based learning method integrated with the
teaching material of robotic visual programs approach. Such a mixed method ap-
proach has significantly better effectiveness in improving students’ learning achieve-
ments than the traditional teaching method integrated with paper practice teaching
materials approach (Hsieh et al., 2022).

We live in the world with Smartphones and Smart Homes, and understanding
how devices work allows us to use technology as a tool to help us solve problems.
Computational thinking allows students to be active, rather than passive users of
technology. The way we understand the technology around us, and the way we ask
questions about these devices, will be a key factor in the 21st-century workforce.
Those who can do it well and efficiently will have more opportunities for both pro-
fessional and personal success. This preparation can and should start with our young
learners (Ung et al., 2022)focusing on empowering digital literacy. Nevertheless,
a preliminary investigation revealed an apparent lack of understanding of compu-
tational thinking skills in general among teachers. The study explores the feasibility
of developing a localized E-learning system to train computational thinking skills
among teachers. An E-learning system, termed as myCTGWBL, was developed on
the basis of a newly proposed conceptual framework to present computational think-
ing teaching–learning repertoire to the teachers. The hypothesis is that myCTGWBL
would develop teachers’ computational thinking and its position in teaching–learn-
ing understanding. myCTGWBL relevance was tested through DeLone and McLean’s
information system and Urbach’s collaboration quality construct. To determine the

47

7. Integrating CT with curricula and classes

success factors, partial least squares structural equation modeling was used. A total of
369 teachers participated in a two-stage survey. Participants’ understanding of com-
putational thinking and perceptions were recorded at the pre- and post-interven-
tion phases. Open-ended questions of the surveys were analyzed using a simple text
analysis technique. The closed-ended questions surveys were analyzed using SPSS
Statistics 22.0. A significant improvement in teachers’ computational thinking teach-
ing–learning repertoire in a relatively short period has been recorded. Teachers also
demonstrated increased confidence in the future delivering computational think-
ing-based lessons. The E-learning conceptual framework has illustrated the predic-
tive power between user intent, user satisfaction, and Computational thinking (CT.

Strategies for teaching Computational Thinking in classes
What are some effective ways to teach computational thinking? Authors suggest to

apply some specific computational strategies based on a review of the literature (Hsu et
al., 2018). We can identify recommendations coming from classic approaches like the
constructivist theory formulated by Dewey Piaget, Vygotsky, Bruner and Glasersfeld
(Csizmadia et al., 2019; Oktan & Vural, 2021) and some other most frequently used
strategies as problem-based learning, project-based learning, collaborative learning,
and game-based learning (Ghani et al., 2022; Yadav & Berthelsen, 2021).

Problem-based learning
Problem-based learning is the most popular strategy for enhancing computation-

al skills. In this method, teachers present a real-world problem that students attempt
to solve using their prior knowledge and experience. Similar to competency-based
education, the activities here focus on developing a set of skills that they can apply to
real-life situations.

Computational thinking problem solving can help students to think critically,
ask the right questions, and generate multiple solutions on their own. It can also help
teachers guide the discussions on the problem at hand (Tekdal, 2021).

Project-based learning
In project-based learning, students are also given a problem to solve. The main

difference is that they are expected to produce an output that represents their solution.
A supporter of the project-based learning, John Dewey, advocated “learning by

doing.” As students explore the possible solutions to a problem and create a project,
they also develop critical thinking, communication skills, and collaboration skills.

Teachers can use project-based learning to foster computational thinking among
students. Thinking computationally can help students come up with a systematic ap-
proach to designing a solution (Belmar, 2022).

Collaborative learning
Unlike the first two strategies, collaborative learning emphasizes more the idea

of working together to solve a problem. Students are challenged to grow not only

48

Computational Thinking for Teachers and Classes

intellectually but also socially and emotionally. In the process, they learn skills that
they can use in real-world work scenarios, where communication and collaboration
skills often give an individual an advantage.

Promoting computational thinking in a collaborative learning environment
means that students will be exposed to other viewpoints. They will get a chance to
work with their peers to solve more complex problems that may be difficult to solve
all by themselves (Neumann et al., 2021).

Game-based learning
Now, you may be wondering how to teach computational thinking in a game-

based learning. Well, teachers design games with a set of learning objectives in mind.
Games can come in various forms, such as board games, card games, role-playing
games, and puzzles. One popular option today is digital game-based learning, which
some argue, is the future of learning.

Teachers can design or source games specifically designed to enhance computa-
tional thinking skills. In a game-based learning setup, students will be more engaged
and free to make mistakes without risks or serious academic consequences (Hsu et
al., 2018).

Teaching elements of Computational Thinking in classes
A method we use to teach computational thinking depends on specific skills

we want to focus on. By utilizing the natural inclinations of young children to ex-
plore and play, and by encouraging problem-solving skills, we can move students’
thinking forward. Practical suggestions for early education are presented by Kristen
Thorson and some other authors (Ezeamuzie et al., 2022; Lee et al., 2023; Munn,
2021; Thorson, 2018).

Teaching Decomposition
When you teach decomposition to young learners, you ask them to join you in

solving problems. You share a complex, multi-step problem and help them to break it
down into smaller parts. Even though students at these ages are not always ready for
multi-step directions or problems, they are ready to see how adults think. By doing
this, you help them to build a framework of strategic, computational thinking.

Ideas to Try: You might use a scenario, such as planning a birthday party, that has
many steps. This kind of task can be hard to do without a plan of smaller, more man-
ageable tasks. Students can help you to split up the big task, and you can help them to
draw or write a picture of their thinking. This gives them a way of thinking about how
to solve similar problems in the future (Munn, 2021; Thorson, 2018)intriguing, and
inviting to students. The constructionist philosophy, hands-on application learning,
addresses social skills like collaboration, communication, and teamwork to provide
an authentic, real-world learning experience. CT brings to the classroom exciting
and innovative activities that infuse robotics with hands-on application platforms
in the science and mathematics curriculum, but the education system has missed

49

7. Integrating CT with curricula and classes

a core set of young open-minded eager students at the intermediate school level.
With today’s vision in education focusing on the 21st-Century learner, CT is emerg-
ing as a key component in the skill set necessary for the new generation of learners.
CT poses a strong ideology based on problem-solving equally conveying an essential
position in cross-curricular classroom activities. This session exposes CT through
a study relating experiences and interactions by students when engaging in a science
lesson utilizing robots. Focusing on how students engage the CT key concepts of: (1.

Teaching Pattern Recognition
Pattern recognition is one of the key parts of computational thinking. It starts

with the basic ABAB pattern taught in the primary grades and goes on to more com-
plex levels of thinking. Pattern recognition asks students to look at similar things
or experiences and find what they have in common. By finding what the things or
experiences share, young students can start to understand trends and make guesses
about what will happen next.

Ideas to Try: To teach students to recognize patterns, you might start by looking
at trees. What do all trees share? They all have a trunk. They all have roots. They all
have branches. Even though there are many differences between kinds of trees, these
parts are in all trees.

Next, work with your students to make a picture of trees. Notice how they all have
trunks, roots, and branches. Then, talk about how the trunks are different from each
other. Some are thick, while others are thin. Some are brown, while others are white.
Talk about how roots and branches are different. To go further with this thinking,
ask your students to draw a picture of a tree, labelling a trunk, roots, and branches.
Emphasize that while your class trees might look different from each other, they are
similar in their main parts.

Finding patterns makes tasks easier because you can use what you already know.
By teaching students to recognize patterns, their awareness of the world around them
grows. This helps them to use the patterns they have found to solve future problems
and make guesses about the world (Ezeamuzie et al., 2022; Thorson, 2018).

Teaching Abstraction
Abstraction is focusing on the information that matters and leaving out the informa-

tion that does not matter. It involves separating the main information from extra details.
Ideas to Try: In primary classrooms, teachers naturally teach kids the idea of

abstraction with books as they find the main idea and key details. To go one step
further, teachers can encourage students to search for information, clues, or treasures
by giving them a goal as they read a book or even have an experience. As students
listen to a speaker during a school presentation about dental hygiene, a kindergarten
class might be looking for details about brushing one’s teeth. By teaching students
abstraction, they are able to sort through all the information available to find the
specific information they need. This is a very useful skill as students read bigger texts
and are given more and more complex information (Lee et al., 2023; Thorson, 2018).

50

Computational Thinking for Teachers and Classes

Teaching Algorithms
Algorithmic thinking means providing solutions to a problem. It means making

a list of rules to follow in order to solve a problem. In the early grades, kids can learn
that the order of how something is done can matter.

Ideas to Try: To show this idea to students, you might ask them to think about
making a sandwich. What do we need to do first? Next? What if I put the mayonnaise
on my sandwich before I add the cheese and lettuce? Talking about the sequence and
order helps students to build the basics of algorithmic thinking.

To get students thinking in algorithms, ask them to plan the path from their
classroom to the gym by writing down a series of steps. Then, let them try it out! Also,
ask them to think about their morning routine. What steps do they take to get ready
for school each morning? How would the order affect the result? Asking students to
think about how changing the steps changes the outcome helps them to be thought-
ful in their thinking and to make changes to their plan to succeed (Thorson, 2018;
Whitney-Smith, 2023).

Digital tools useful in teaching Computational Thinking
Teaching computational thinking can be supported by platforms that can help

you integrate computational thinking into your curriculum in a fun and engaging
way. These platforms are:
– Ozobot: https://ozobot.com/ Ozobot is an innovative platform that allows you

to teach computational thinking using robots. Ozobots are smart robots that can
follow lines and commands drawn by your students using different colors. Ozo-
bot also provides video lessons on various subjects that you can share with your
students in grades 3-5. These lessons help your students learn how to code the ro-
bots using visual codes and apply computational thinking to different disciplines.

– Scratch: https://scratch.mit.edu/ Scratch is a free and easy-to-use platform that
lets you and your students create interactive stories, games, and animations using
colourful blocks of code. Scratch supports more than 70 languages and offers
a variety of resources for educators, such as tutorials, coding cards, lesson plans,
and strategies. You can also use Google’s CS First curriculum or Code Club’s pro-
ject modules to teach Scratch in your classroom. With Scratch, you can inspire
your students to express their creativity and collaborate with others while learn-
ing computational thinking.

– CTApp: https://ctapp.eu/ CTApp is a new mobile game in an escape room format.
The aim of the player is to answer a series of questions and solve problems. The
game combines the concepts of Computational Thinking and Serious Game. The
game can be used by primary school students aged between 12 and 18 who speak
English, Greek, Italian or Polish. Pupils will be able to use the solutions developed
in the project in their school subjects.

– Kodable: https://www.kodable.com/ Kodable is a comprehensive coding platform
that provides you with a complete curriculum to teach computational thinking.
Kodable helps your students learn how to code using JavaScript, Python, HTML,

https://scratch.mit.edu/
https://ctapp.eu/
https://www.kodable.com/

51

7. Integrating CT with curricula and classes

CSS, Java, and more. Kodable also helps your students develop other skills, such
as teamwork, resilience, communication, and design. Kodable is available for iOS
devices and desktops, and each lesson includes instruction guidance, vocabulary
words, and materials to help you teach effectively.

Assessment of computational thinking in education
Computational thinking (CT) is seen as a key competence of the 21st century,

but there is no universal model of assessment of CT competencies in education.
CT competency can be evaluated by using: questionnaires, tests/tasks, observations,
interviews and analysis of products. There are also some tools not related directly
to CT assessment, but assessing dimensions connected to CT, like logical thinking
/ reasoning, data analysis, critical thinking, automation, cognitive planning, coordi-
nation, computational concepts and many others. The systematic review of the tools
shows that they do not refer to a shared competence model of CT differentiated by
age. The different studies assess CT in pupils in different grades, however it is not
clear what competences pupils should reach at which age since the same dimensions
and tools are used for pupils of different ages (Babazadeh & Negrini, 2022).

A set of sample lesson plans can be a useful aid for implementing computer
thinking into the practice of a teacher’s daily work with a class. The scenarios includ-
ed below have been tested by teachers and contain indications for teaching computer
science subjects, as well as literature and mother tongue. The suggestions indicate the
possibility of spreading the activities over several lesson units or implementing them
in a single lesson. We also encourage all teachers interested in computer thinking to
share the lesson ideas they have developed.

52

Computational Thinking for Teachers and Classes

Robert Porzak
Lubelska Akademia WSEI

7.1. Scenario 1

Author / Teacher: Robert Porzak

Subject: IT Classes, Computer subjects, etc.

Level (ISCED, difficulty): ISCED level 3 – Upper secondary education

Topic: Become a spy (basics) – hide a message in a picture

Prerequisite skills or knowledge (connected to the prior lesson):
a) Graphic program basic knowledge (GIMP or similar)
b) Understanding what an auto-stereogram is (to find out more, read more about

auto-stereograms: https://en.wikipedia.org/wiki/Autostereogram

Time required for a pre-class activity: 2 hours
Time required for an in-class activity: 1 hour
Time required for a post-class activity: 2 hours

Story, canvas, challenges for student (optional, motivational)
We all know that it is difficult to be a spy. One of the core competencies of a good

spy is to make communications secret. One can try to use modern computer codes or
special electronic tools to encode communications, but the recipient will then have to
rely on a computer or electronics to decipher the message. However, there are visual
coding methods that are not easily deciphered by unauthorized people who do not
know the mechanism of the process. Your secret message encoded in this way may
be visible to everyone, but only informed people can decipher it. Are you ready for
a lesson on how to become a spy sending hidden messages in images?

1. Student’s new material (before the class)
a) Learn how to prepare in a graphic program a flat (2-dimensional) pattern

map (a picture made of small, coloured dots/pictures/patterns). Sample 2-di-
mensional patterns should look like those shown below:

https://en.wikipedia.org/wiki/Autostereogram

53

7. Integrating CT with curricula and classes

Source: https://www.easystereogrambuilder.com/

Learn how to do it in free GIMP https://www.gimp.org/ or any other software. You can
see how to do it, for example here: https://www.youtube.com/watch?v=TKhs7F0hAik

b) Learn how to prepare a depth map understood as a simple black and white
picture looking like a negative, blurred. A sample depth map can look like
this one shown below:

Source: https://www.easystereogrambuilder.com/

Learn how to do it in free Blender https://www.blender.org/ or any other software. You
can see how to do it for example here: https://www.youtube.com/watch?v=3P6DVDy6DG0

2. In-class activities
a) Prepare a flat (2-dimensional) pattern map (a picture made of small, colour-

ed dots/pictures/patterns). A pattern should be an image with colour varia-
tions. The most important thing is that it should not have horizontal regions
(strips) with the same colour:

https://www.gimp.org/
https://www.youtube.com/watch?v=TKhs7F0hAik
https://www.blender.org/
https://www.youtube.com/watch?v=3P6DVDy6DG0

54

Computational Thinking for Teachers and Classes

Source: https://www.easystereogrambuilder.com/

You can use free GIMP https://www.gimp.org/ or any other software.

b) Prepare a depth map of the corresponding size as a colour map (a simple
black and white picture looking like a negative, blurred). The whiter the points, the
closer the points are to you. So, black represents the background, and the different
shades of white represent points floating above the background:

Source: https://www.easystereogrambuilder.com/

Use free Blender https://www.blender.org/ or any other software.

c) Cover both images with oversampling (adding depth) in the programs men-
tioned. You can also use GIMP’s plugin, if you want to try: https://gimplearn.net/
viewtopic.php?t=2974

d) Write a block algorithm showing steps necessary to do a text message hidden
in graphics.

https://www.gimp.org/
https://www.blender.org/
https://gimplearn.net/viewtopic.php?t=2974
https://gimplearn.net/viewtopic.php?t=2974

55

7. Integrating CT with curricula and classes

3. Post-class activities
a) Verify your algorithm preparing two text messages hidden in auto-stere-

ograms. Follow your algorithm carefully, step by step, checking if this is universal
enough.

b) Write your conclusions on the possibility of coding algorithms hiding text
messages in pictures as a paragraph of about 50 words.

4. Evaluation and Assessment
Learning outcome – student develops correct algorithms adequate to the task:
√ E - for simple problems given an algorithmic technique
√ D - for non-trivial problems with a given hint
√ C - for non-trivial problems
√ B - for harder problems using the best method with a given hint
√ A - for harder problems using the best method

56

Computational Thinking for Teachers and Classes

Fahimeh Mousavi
INNOVA S.r.l.

7.2. Scenario 2

Author / Teacher: Fahimeh Mousavi / Cristina Fregonese

Subject: Arts, Language Arts and Media Studies and Character Education

Level (ISCED, difficulty): ISCED level 3 – Upper secondary education

Topic: Storyboards through video games

Prerequisite skills or knowledge (connected to the prior lesson):
a) Understanding what a storyboard is (https://en.wikipedia.org/wiki/Storyboard)
b) Basic knowledge in writing skills

Time required for a pre-class activity: 2 hours
Time required for an in-class activity: 1 hours
Time required for a post-class activity: 2 hours

Story, canvas, challenges for student (optional, motivational)
Because video games are a visual medium, storyboards are a great way to map out

the story being told through the video game. Students will apply and share their ideas,
personal perspectives, and creative thoughts through the storyboard activity. In par-
ticular, students will have the opportunity to map a story out using storyboards and
demonstrate how visual cues can help communicate feelings, ideas and understanding
when telling a story. Each student will use a storyboard to share a story they create.

5. Student’s new material (before the class)
Vocabulary to be used:
POV (Point of View): POV, or the point-of-view shot, which allows the audience

to see what is going on through a character’s eyes.
Master Shot: A term referring to a shot that runs for the length of a scene and

shows all of the characters in view.
Zoom: Zooming is a movement of the camera lens as opposed to a movement

of the camera itself. Zooming in means adjusting the lens to frame in closer on the
subject, while zooming out means the opposite: adjusting the lens to take in more of
the scene.

Track: A tracking shot is another way to follow subjects. This type of shot involves
moving the entire camera from one place to another, and often follows a moving

https://en.wikipedia.org/wiki/Storyboard

57

7. Integrating CT with curricula and classes

subject. Tracking can involve moving the camera with tracks or on a dolly, or it can
be done handheld.

Guiding Questions:
1. How does the selection of shots contribute to the overall feel of the scene?
2. What kinds of shot (close up vs. wide shot) convey different meanings and

emotions?

Materials:
a) Scratch app to create projects - Download
b) Adobe AIR (required for Scratch to run) - Download
c) Storyboard templates – Template one, Template two
d) A film or a video game students will use to storyboard their favourite scene

6. In-class activities
Non-Computer Activity
Part A: View a Scene from your favourite video game or film.
a. Can you find a moment where changing shot types (wide shot, medium shot,

close-up) help emphasize a story point?
b. How does the staging and framing heighten the emotional impact of the scene?

Part B: Pick a scene or sequence from your favourite video game or film and cre-
ate a storyboard for a brief scene (3-5 minutes in length)

a. Sketch the frame for each shot in the scene selected. Indicate if it is a wide
shot, medium shot or close-up in the description.

Computer Activity
With Scratch, you can program your own interactive stories, games, and

animations.
Storyboarding is a great introductory exercise to do with students before using

Scratch to help plan and map out the story of your game or interactive story. This
activity will guide you through that process.

First, choose some common guidelines for students to follow to create their in-
teractive story or game. These might include a theme each interactive story or game
should address (for instance, bullying, community, identity) and also where the story
takes place. The following provides a framework for how you may choose to structure
your story:

• Act 1 is the “beginning,” Have students answer Where, When, Who, What
and Why of the story.

• Act 2 is the “middle,” where characters attempt to achieve goals and encoun-
ter a conflict.

• Act 3 is the “end,” where the conflict is resolved and the protagonist’s true
character is revealed.

https://scratch.mit.edu/download
https://blog.adobe.com/en/publish/2019/05/30/the-future-of-adobe-air
https://pinnguaq.com/wp-content/uploads/2022/11/Storyboard-Template-3-1.pdf
https://pinnguaq.com/wp-content/uploads/2022/11/Storyboard-Template-1-1.pdf
https://scratch.mit.edu/download

58

Computational Thinking for Teachers and Classes

7. Post-class activities
After students have illustrated their storyboards, cut each cell out and rearrange

the sequence of events. Ask students to line up the cells in different orders to consider
how this changes the story before deciding on the final outcome. This process intro-
duces the concept of experiential media and demonstrates the basics of story struc-
ture by revealing how the story can change depending on how events are sequenced.

Once storyboards are complete each student has a map to start their project in
Scratch.

8. Evaluation and Assessment
Learning outcome – student develops skills to:
a. Repeat similarities among objects, ideas, and problems.
b. Rely on quantitative or qualitative information (e.g., text, symbols, etc.) col-

lected for analysis.
c. Find patterns among decomposed problems that can help us solve more

complex problems.
d. Isolate key details while ignoring the remaining elements.
e. Get familiar with the process of breaking down complex problems into small-

er, more manageable parts.
f. Create flowcharts, storyboards or other representational forms to prepare to

write.
g. Identify patterns in writing by creating and refining written algorithms, pseu-

docode or flowcharts.

https://scratch.mit.edu/download

59

7. Integrating CT with curricula and classes

Eftychia Xerou
Centre for Advancement of Research

and Development in Educational Technology Ltd.

7.3. Scenario 3

Author / Teacher: Eftychia Xerou

Subject: IT Classes, Computer subjects, etc.

Level (ISCED, difficulty): Secondary education - gymnasium

Topic: Create an interactive story to represent the social phenomenon of the
Human Impact on the environment

Prerequisite skills or knowledge (connected to the prior lesson):
a. Block based programming (Scratch)
b. Knowledge regarding the human Impact on the environment and more specifi-

cally the destruction of the environment (a social phenomenon where the action
of man destroys and contaminates different natural resources, such as land, water,
air, minerals, and forests).

Time required for a pre-class activity: 2 hours
Time required for an in-class activity: 1 hour
Time required for a post-class activity: 2 hours

Story, canvas, challenges for student (optional, motivational)
As we all can understand the destruction of the natural environment that we

live in is an extremely important social phenomenon that affects everyone directly
during their life. The environmental degradation is the deterioration of the environ-
ment through depletion of resources such as air, water and soil; the destruction of
ecosystems and the extinction of wildlife. During this lesson, students will have to
present the environmental degradation and one of its many different aspects with the
consequences to nature. Are we ready to understand how to conduct a research, learn
more, understand the consequences and be proactive for the future?

1. Student’s new material (before the class)
a) Conduct a research regarding one specific problem: pollution, air pollution,

smog, global warming, species extinction and decide in which area the in-
teractive creation will be focused. Try to underline the representation of

Computational Thinking for Teachers and Classes

the problem, the causes, the consequences and the solutions. Collect your
findings in a word document.

b) Learn how to prepare a prototype storyboard for the scenario in an online
program, to represent the 4 areas mentioned above in a story. Write the story and cre-
ate your storyboard here: Free Storyboard Creator – Easily Make Storyboards Online
| Canva. For help for the Canvas storyboard creator: Design Storyboard Activities |
Canva for Education – YouTube

2. In-class activities
a) After breaking the complex problem into 4 different parts (causes, problem,

consequences and solutions) and representing the problem in an interactive
story through the creation of the prototype the next step is the creation of the
story in Scratch. Scratch -Imagine, Program, Share (mit.edu) Tutorial of the
software: How to Make a Story in Scratch | Tutorial – YouTube

b) The interactive story must have at least two main characters (sprites), 4 dif-
ferent backgrounds, sounds and words for each character and the interactive
part of the story must represent a choice. The choice may be a choice regard-
ing different consequences (for example if the main character chooses to walk
in the city, the number of the cars may decrease and the air pollution level
may decrease). This part must be represented as one choice for students and
the other choice may be the opposite.

3. Post-class activities
a) Verify that the interactive story is working by choosing to start and test both

of the choices given.
b) Write your conclusions on the possibility of changing small everyday habits

to impact the environment (100 words).

4. Evaluation and Assessment
Learning outcomes:
1. Students learnt how to conduct a research
2. Students learnt about the destruction of the natural environment
3. Students represent stories on storyboards and in interactive representations

References: https://archive.unescwa.org/environmental-degradation#:~:text=
Environmental%20degradation%20is%20the%20deterioration,and%20the%20
extinction%20of%20wildlife.

https://www.canva.com/create/storyboards/
https://www.canva.com/create/storyboards/
https://www.youtube.com/watch?v=uHbJZDwrXjM
https://www.youtube.com/watch?v=uHbJZDwrXjM
https://scratch.mit.edu/
https://www.youtube.com/watch?v=uv8mbL-MC58

61

Bibliography

7 examples of algorithms in everyday life for students. (2023, February 13). Learning.
com. https://www.learning.com/blog/7-examples-of-algorithms-in-everyday
-life-for-students/

Ackermann, E., (2001). Piaget’s constructivism, Papert’s constructionism: What’s the
difference. Future of learning group publication, 5(3), p.438.

Adler, R. F., Hibdon, J., Kim, H., Mayle, S., Pines, B., & Srinivas, S. (2023). Assess-
ing computational thinking across a STEM curriculum for pre-service
teachers. Education and Information Technologies, 28(7), 8051–8073.
https://doi.org/10.1007/s10639-022-11508-4

Ahamed, S.I., Brylow, D., Ge, R., Madiraju, P., Merrill, S.J., Struble, C.A. and Early, J.P.
(2010). Computational thinking for the sciences: a three day workshop for
high school science teachers. Proceedings of the 41st ACM technical symposi-
um on Computer science education (pp. 42-46). ACM.

Aho, A. V. (2012). Computation and computational thinking. Computer Journal,
55(7), 832–835. https://doi.org/10.1093/comjnl/bxs074

Armoni, M. (2013). On teaching abstraction in CS to novices. Journal of Computers
in Mathematics and Science Teaching, 32(3), 265-284.

Babazadeh, M., & Negrini, L. (2022). How Is Computational Thinking Assessed in
European K-12 Education? A Systematic Review. International Journal of
Computer Science Education in Schools, 5(4). ERIC. https://search.ebscohost.
com/login.aspx?direct=true&db=eric&AN=EJ1366667&lang=pl&site=e-
host-live

Banilower, E. R., Smith, P. S., Weiss, I., Malzahn, K. A., Campbell, K. M., & Weis, A. M.
(2013). Report of the 2012 national survey of science and mathematics educa-
tion. Chapel Hill: Horizon Research, Inc

Barendsen, E., Mannila, L., Demo, B., Grgurina, N., Izu, C., Mirolo, C., ... & Stupu-
rienė, G. (2015). Concepts in K-9 computer science education. Proceedings of
the 2015 ITiCSE on working group reports (pp. 85-116).

Belmar, H. (2022). Review on the teaching of programming and computational
thinking in the world. Frontiers in Computer Science, 4. https://www.fron-
tiersin.org/articles/10.3389/fcomp.2022.997222

Bocconi S., Chioccariello A., Dettori G., Ferrari A., Engelhardt K. (2016) Developing
computational Thinking in Compulsory Education. Implication for policy
and practice. JRC Working Papers JRC104188, Joint Research Centre

http://Learning.com
http://Learning.com

62

Computational Thinking for Teachers and Classes

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016).
Developing computational thinking in compulsory education: Implications
for policy and practice. Resource document (EUR 28295 EN). https://doi.
org/10.2791/792158.

Burgett, T., Folk, R., Fulton, J., Peel, A., Pontelli, E. and Szczepanski, V. (2015). DIS-
SECT: Analysis of pedagogical techniques to integrate computational think-
ing into K-12 curricula. Frontiers in Education Conference (FIE), 2015. 32614
2015. IEEE (pp. 1-9). IEEE.

Calderon, A., Crick, T., & Tryfona, C. (2015). Developing computational thinking
through pattern recognition in early years education (Version 1). Cardiff Met-
ropolitan University. https://hdl.handle.net/10779/cardiffmet.21262746.v1 ([])

Cetin, I., & Dubinsky, E. (2017). Reflective abstraction in computational thinking.
The Journal of Mathematical Behavior, 47, 70-80.

Chiprianov, V. and Gallon, L. (2016), July. Introducing Computational Thinking to
K-5 in a French Context. Proceedings of the 2016 ACM Conference on Inno-
vation and Technology in Computer Science Education (pp. 112-117). ACM.

Costa, E. J. F., Campos, L. M. R. S., & Guerrero, D. D. S. (2017). Computational think-
ing in mathematics education: A joint approach to encourage problem-solv-
ing ability. 2017 IEEE Frontiers in Education Conference (FIE) (pp. 1–8). IEEE.

Csizmadia A., Curzon P., Dorling M., Humphreys S. (2015). Computational thinking.
A guide for teachers. Computing At School (CAS).

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J.
(2015). Computational thinking: a guide for teachers.

Csizmadia, A., Standl, B., & Waite, J. (2019). Integrating the Constructionist Learn-
ing Theory with Computational Thinking Classroom Activities. Informatics
in Education, 18(1), 41–67. ERIC.

Cui, Z., & Ng, O. L. (2021). The interplay between mathematical and computational
thinking in primary school students’ mathematical problem-solving within
a programming environment. Journal of Educational Computing Research,
59(5), 988–1012.

Department of Education, UK. (2023). Early Years Foundation Stage Profile 2024 hand-
book. https://assets.publishing.service.gov.uk/government/uploads/system/
uploads/attachment_data/file/1109972/Early_Years_Foundation_Stage_pro-
file_2023_handbook.pdf

Dogan, A. (2020). Algorithmic Thinking in Primary Education. International Journal
of Progressive Education, 16(4), 286-301.

63

Bibliography

Dominici P. (2016) Il grande equivoco. Ripensare l’educazione (#digitale) per la Società
Ipercomplessa. Nòva.

Dorodchi, M., Dehbozorgi, N., Fallahian, M., & Pouriyeh, S. (2021). Teaching Soft-
ware Engineering using Abstraction through Modeling. Informatics in Edu-
cation, 20(4).

Evripidou, S., Amanatiadis, A., Christodoulou, K., & Chatzichristofis, S. A. (2021).
Introducing algorithmic thinking and sequencing using tangible robots.
IEEE Transactions on Learning Technologies, 14(1), 93-105.

Examples of Abstraction in Everyday Life. (2022). Learning.com. https://www.learn-
ing.com/blog/examples-of-abstraction-in-everyday-life/

Ezeamuzie, N. O., Leung, J. S. C., Garcia, R. C. C., & Ting, F. S. T. (2022). Discovering
computational thinking in everyday problem solving: A multiple case study
of route planning. Journal of Computer Assisted Learning, 38(6), 1779–1796.
Academic Search Ultimate.

Flórez, F. B., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017).
Changing a Generation’s Way of Thinking: Teaching Computational Think-
ing Through Programming. Review of Educational Research, 87(4), 834–860.

Futschek, G. (2006). Algorithmic thinking: the key for understanding computer sci-
ence. International conference on informatics in secondary schools-evolution
and perspectives (pp. 159-168). Springer, Berlin, Heidelberg.

Futschek, G., & Moschitz, J. (2010). Developing algorithmic thinking by inventing
and playing algorithms. Proceedings of the 2010 constructionist approaches to
creative learning, thinking and education: Lessons for the 21st century (con-
structionism 2010), 1-10.

Gabbari M., Gagliardi R., Gaetano A., Sacchi D. (2020). Integrare Coding e Pensiero
Computazionale nella didattica. Bricks Magazine http://www.rivistabricks.
it/2020/03/03/integrare-coding-e-pensiero-computazionale-nella-didattica/

Ghani, A., Griffiths, D., Salha, S., Affouneh, S., Khalili, F., Khlaif, Z. N., & Burgos, D.
(2022). Developing Teaching Practice in Computational Thinking in Pales-
tine. Frontiers in Psychology, 13. https://www.frontiersin.org/articles/10.3389/
fpsyg.2022.870090

Giacalone S. (2020). Che cos’è il pensiero computazionale? Training Course on Com-
putational Thinking, Problem solving e Coding. Cessaniti, 16/20.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: a review of the state of
the field. Educational Researcher, 42(1), 38–43.

Grover, S., & Pea, R. (2018). Computational Thinking: A Competency Whose Time
Has Come. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Computer Science

http://Learning.com

64

Computational Thinking for Teachers and Classes

Education: Perspectives on Teaching and Learning in School (pp. 19–38).
Bloomsbury Academic. https://doi.org/10.5040/9781350057142.ch-003

Haberman, B., & Muller, O. (2008). Teaching abstraction to novices: Pattern-based
and ADT-based problem-solving processes. 2008 38th Annual Frontiers in
Education Conference (pp. F1C-7). IEEE.

Haddad, R.J. and Kalaani, Y. (2015). Can computational thinking predict academ-
ic performance?. Integrated STEM Education Conference (ISEC), 2015 IEEE
(pp. 225-229).

Hazzan, O. (2008). Reflections on teaching abstraction and other soft ideas. ACM
SIGCSE Bulletin, 40(2), 40-43.

Howard, W.R. (2007), Pattern Recognition and Machine Learning, Kybernetes,
Vol. 36 No. 2, pp. 275-275. https://doi.org/10.1108/03684920710743466)

Howell, L., Jamba, L., Kimball, A.S. and Sanchez-Ruiz, A. (2011, March). Compu-
tational thinking: modeling applied to the teaching and learning of English.
Proceedings of the 49th Annual Southeast Regional Conference (pp. 48-53).
ACM.

Hromkovic, J., Kohn, T., Komm, D., & Serafini, G. (2017). Algorithmic thinking from
the start. Bulletin of EATCS, 1(121).

Hsieh, M.-C., Pan, H.-C., Hsieh, S.-W., Hsu, M.-J., & Chou, S.-W. (2022). Teaching
the Concept of Computational Thinking: A STEM-Based Program With Tan-
gible Robots on Project-Based Learning Courses. Frontiers in Psychology, 12.
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.828568

Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach compu-
tational thinking: Suggestions based on a review of the literature. Computers
and Education, 126, 296-310. https://doi.org/10.1016/j.compedu.2018.07.004

https://archive.unescwa.org/environmental-degradation#:~:text=Environmen-
tal%20degradation%20is%20the%20deterioration,and%20the%20extinc-
tion%20of%20wildlife.

Isbell, C.L., Stein, L.A., Cutler, R., Forbes, J., Fraser, L., Impagliazzo, J., Proulx, V.,
Russ, S., Thomas, R. and Xu, Y. (2010). (Re) defining computing curricula by
(re) defining computing. ACM SIGCSE Bulletin, 41(4), pp.195-207.

Kiss, G., & Arki, Z. (2017). The influence of game-based programming education on the
algorithmic thinking. Procedia-Social and Behavioral Sciences, 237, 613-617.

Kong, S.-C., Chiu, M. M., & Lai, M. (2018). A study of primary school students’ inter-
est, collaboration attitude, and programming empowerment in computation-
al thinking education. Computers & Education, 127, 178-189. doi: 10.1016/
j.compedu.2018.08.026

65

Bibliography

Koppelman, H., & Van Dijk, B. (2010). Teaching abstraction in introductory courses.
In Proceedings of the fifteenth annual conference on Innovation and technol-
ogy in computer science education (pp. 174-178).

Kramer, J. (2007). Is abstraction the key to computing?. Communications of the ACM,
50(4), 36-42.

Krist, C., Elby, A., Good, J., Gupta, A., Sohr, E. R., & Yadav, A. (2017). Integrating
computational thinking strategies that support science inquiry: A case study
from a summer PD. Paper presented at the Annual Meeting of American Edu-
cational Research Association, San Antonio, TX

Larsen, M. (2010). How to recognize word patterns in a foreign language: Autolin-
gual – learn a foreign language by yourself. AutoLingual. https://autolingual.
com/word-pattern-recognition/

Lee, J., Joswick, C., & Pole, K. (2023). Classroom Play and Activities to Support Com-
putational Thinking Development in Early Childhood. Early Childhood Edu-
cation Journal, 51(3), 457–468. Academic Search Ultimate.

Lockwood, James & Mooney, Aidan. (2017). Computational Thinking in Education:
Where does it Fit? A systematic literary review. International Journal of Com-
puter Science Education in Schools.2.

Lv, L., Zhong, B. & Liu, X. (2022). A literature review on the empirical studies of the
integration of mathematics and computational thinking. Educ Inf Technol.
https://doi.org/10.1007/s10639-022-11518-2

Malik, S. I., Mathew, R., Tawafak, R. M., & Khan, I. (2019). Gender difference in per-
ceiving algorithmic thinking in an introductory programming course. EDU-
LEARN19 Proceedings of the International Conference on Education and New
Learning Technologies (Vol. 18, pp. 8246-8254).

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L.,
& Settle, A. (2014). Computational Thinking in K-9 Education. ITiCSE
‘14 Proceedings of the 2014 conference on Innovation & technology in com-
puter science education (pp. 1-29). ACM Press Digital Library. https://doi.
org/10.1145/2713609.2713610.

McCormick, K. & Hall, J. (2022). Computational thinking learning experiences, out-
comes, and research in preschool settings: a scoping review of literature. Ed-
ucation and Information Technologies. 27. 1-36. 10.1007/s10639-021-10765-z.

Mezak, J., & Papak, P. P. (2018, May). Learning scenarios and encouraging algo-
rithmic thinking. 2018 41st International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO)
(pp. 0760-0765). IEEE.

66

Computational Thinking for Teachers and Classes

Midoro V. (2015). La Scuola ai tempi del Digitale – Istruzioni per costruire una scuola
nuova. FrancoAngeli.

Milková, E. (2012). Development of algorithmic thinking and imagination: base of
programming skills. Proceedings of the 16th WSEAS International Conference
on Computers.

Mooney, A., Duffin, J., Naughton, T., Monahan, R., Power, J. and Maguire, P. (2014).
PACT: An initiative to introduce computational thinking to second-level educa-
tion in Ireland. Conference: International Conference on Engaging Pedagogy.

Munn, C. (2021). A Qualitative Study Exploring Robots as a Potential Classroom
Tool for Teaching Computational Thinking within a Sixth-Grade Class. Jour-
nal of Computers in Mathematics and Science Teaching, 40(3), 229–264. ERIC.

Neumann, M. D., Dion, L., & Snapp, R. (2021). Teaching Computational Thinking: An
Integrative Approach for Middle and High School Learning. The MIT Press.
https://doi.org/10.7551/mitpress/11209.001.0001

Oktan, S., & Vural, S. (2021). A teaching strategies model experiment for compu-
tational design thinking. TECHNE: Journal of Technology for Architecture
& Environment, 154–158. Academic Search Ultimate.

Parry, M. (2021). Abstraction: The important bits. Hello World. https://helloworld.
raspberrypi.org/articles/hw16-abstraction-the-important-bits

Peel, A., & Friedrichsen, P. (2018). Algorithms, abstractions, and iterations: Teaching
computational thinking using protein synthesis translation. The American Bi-
ology Teacher, 80(1), 21-28.

Pensiero Computazionale - Una guida per insegnanti CNR (2016). Computing At
School. https://pensierocomputazionale.itd.cnr.it/pluginfile.php/957/mod_
page/content/7/Guida%20al%20Pensiero%20Computazionale.pdf

Pérez-Marín, D., Hijón-Neira, R., Bacelo, A., & Pizarro, C. (2020). Can computation-
al thinking be improved by using a methodology based on metaphors and
scratch to teach computer programming to children? Computers in Human
Behavior, 105, 105849. https://doi.org/10.1016/j.chb.2018.12.027

Rich, K. M., Spaepen, E., Strickland, C., & Moran, C. (2020). Synergies and differenc-
es in mathematical and computational thinking: implications for integrated
instruction. Interactive Learning Environments, 28(3), 272–283.

Rich, K.M., Yadav, A. & Larimore, R.A. Teacher implementation profiles for inte-
grating computational thinking into elementary mathematics and science
instruction. Educ Inf Technol 25, 3161–3188 (2020). https://doi.org/10.1007/
s10639-020-10115-5

67

Bibliography

Samarasinghe, S. (2006). Neural Networks for Applied Sciences and Engineering: From
Fundamentals to Complex Pattern Recognition (1st ed.). Auerbach Publica-
tions. https://doi.org/10.1201/9780849333750

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating
computational thinking with K-12 science education using agent-based com-
putation: a theoretical framework. Education and Information Technologies,
18(2), 351–380. https://doi.org/10.1007/s10639-012-9240-x

Shen, X., Efros, A. A., & Aubry, M. (2019). Discovering visual patterns in art collec-
tions with spatially-consistent feature learning. Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 9278-9287).

Shuiyan He, Yongmin Hang, & Yi Ding. (2014). Teaching method based on computa-
tional thinking a case research. 2014 9th International Conference on Computer
Science & Education, 817–820. https://doi.org/10.1109/ICCSE.2014.6926576

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational think-
ing. Educational Research Review, 22, 142–158.

Sigayret, K., Tricot, A., & Blanc, N. (2022). Unplugged or plugged-in programming
learning: A comparative experimental study. Computers & Education, 184,
104505.

Sung, W., & Black, J. B. (2020). Factors to consider when designing effective learning:
infusing computational thinking in mathematics to support thinking-doing.
Journal of Research on Technology in Education, 53(4), 404–426.

Symposium on Computer Science Education (SIGCSE ‘19). Association for Com-
puting Machinery, New York, NY, USA, 906–912. https://doi.org/10.1145/
3287324.3287431

Tekdal, M. (2021). Trends and development in research on computational think-
ing. Education and Information Technologies, 26(5), 6499–6529. https://doi.
org/10.1007/s10639-021-10617-w

The Bowers Institute. (n.d.). TECH TIP: Computational Thinking. https://www.the-
tech.org/media/l0nasrfv/techtip_computationalthinking.pdf

Thorson, K. (2018). Early Learning Strategies for Developing Computational Thinking
Skills. Getting Smart. https://www.gettingsmart.com/2018/03/18/early-learn-
ing-strategies-for-developing-computational-thinking-skills/

Tsalapatas, H., Heidmann, O., Alimisi, R., & Houstis, E. (2012). Game-based program-
ming towards developing algorithmic thinking skills in primary education. Sci-
entific Bulletin of the Petru Maior University of Targu Mures, 9(1), 56-63.

Ung, L.-L., Labadin, J., & Mohamad, F. S. (2022). Computational thinking for teach-
ers: Development of a localised E-learning system. Computers & Education,
177, 104379. https://doi.org/10.1016/j.compedu.2021.104379

68

Computational Thinking for Teachers and Classes

Uzumcu, O., Bay, E. The effect of computational thinking skill program design de-
veloped according to interest driven creator theory on prospective teachers.
Educ Inf Technol 26, 565–583 (2021). https://doi.org/10.1007/s10639-020-
10268-3

van Zanten, M., & van den Heuvel-Panhuizen, M. (2018). Opportunity to learn prob-
lem solving in dutch primary school mathematics textbooks. ZDM: The In-
ternational Journal on Mathematics Education, 50(5), 827–838.

Waite, J. L., Curzon, P., Marsh, W., Sentance, S., & Hadwen-Bennett, A. (2018). Ab-
straction in action: K-5 teachers’ uses of levels of abstraction, particularly
the design level, in teaching programming. International Journal of Computer
Science Education in Schools, 2(1), 14-40.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.
(2016). Defining computational thinking for mathematics and science class-
rooms. Journal of Science Education and Technology, 25(1), 127–147

White, P., & Mitchelmore, M. C. (2010). Teaching for abstraction: A model. Mathe-
matical Thinking and Learning, 12(3), 205-226.

Whitney-Smith, R. M. (2023). The Emergence of Computational Thinking in Na-
tional Mathematics Curricula: An Australian Example. Journal of Pedagogical
Research, 7(2), 41–55. ERIC.

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3),
33–35. Business Source Ultimate.

Wing, J. M. (2011). Research Notebook: Computational Thinking—What and Why.
The link Magazine, 6, 20-23. https://people.cs.vt.edu/~kafura/CS6604/Pa-
pers/CT-What-And-Why.pdf Wing, J. M. (2006). Computational Thinking,
CACM 49(3), pp. 33-35.

Wing J. M. (2016). Computational thinking, 10 years later. https://www.microsoft.
com/en-us/research/blog/computational-thinking-10-years-later/

Wray S. (2012). Not a Tool, but a Philosophy of Knowledge. http://www.stuartwray.
net/philosophy-of-knowledge.pdf

Yadav, A., & Berthelsen, U. (2021). Computational Thinking in Education: A Pedagog-
ical Perspective. Routledge. https://doi.org/10.4324/9781003102991

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational thinking for teach-
er education. Communications of the ACM, 60, 55–62. https://doi.org/10.
1145/2994591

Yihuan D., Catete V., Jocius R., Lytle N., Barnes T., Albert J., Joshi D., Robinson R.,
and Andrews A. (2019). PRADA: A Practical Model for Integrating Compu-
tational Thinking in K-12 Education. Proceedings of the 50th ACM Technical.

This publication has been funded with the support from the European
Commission (project no:2020-1-PL01-KA201-081924). This publication reflects
the views only of the author, and the Commission cannot be held responsible
for any use which may be made of the information contained therein.

Innovatio Press Publishing House
WSEI Univeristy
20-209 Lublin, Projektowa 4
tel.: +48 81 749 17 77, fax: +48 81 749 32 13
www.wsei.lublin.pl
e-mail: wydawnictwo@wsei.lublin.pl

Electronic ISBN: 978-83-67550-13-0

Computational thinking is the ability to understand, analyze and solve problems using IT
tools and concepts.
The practical value of the book is undeniable, especially in the context of the present-
day educational challenges. The ideas presented are not merely theoretical
considerations, but are oriented towards practical application in the daily teacher’s work.
Specific examples and tips on the implementation of computational thinking in the
teaching process provide the reader with specific tools to act effectively.
The book is also distinguished by the inclusion of an educational application – CTApp,
which is a valuable addition to theoretical considerations.

Wiesław Kowalski, PhD

It is an up to date book covering all the last developments in the field. A key element is
CTApp serious game which is an excellent way to learn about Computational Thinking
with the latest trend in educational technology, serious games. Serious games can be
incredible tools for teaching, learning, and education.

Paraskevi Poulogiannopoulou, Phd, European University Cyprus

https://www.universityxp.com/blog/2019/5/7/what-are-serious-games
https://www.universityxp.com/blog/2020/4/9/what-is-a-learning-game

	_Hlk135213930
	_Hlk135234374
	_heading=h.gjdgxs

